1
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
2
|
Poskus MD, McDonald J, Laird M, Li R, Norcoss K, Zervantonakis IK. Rational design of HER2-targeted combination therapies to reverse drug resistance in fibroblast-protected HER2+ breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594826. [PMID: 38798591 PMCID: PMC11118562 DOI: 10.1101/2024.05.18.594826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells. Methods Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts. Results Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity. Conclusions Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.
Collapse
|
3
|
Wang A, Li C, Jiang Q, Jiang S. Inetetamab in combination with rapamycin and chemotherapy for trastuzumab-treated metastatic human epidermal growth factor receptor 2-positive breast cancer with abnormal activation of PI3K/Akt/mTOR pathway. Cancer Rep (Hoboken) 2023; 6:e1864. [PMID: 37501598 PMCID: PMC10480495 DOI: 10.1002/cnr2.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) overexpression is an independent prognostic factor of poor prognosis and a predictor of efficacy of anti-HER2 therapy. A limited number of patients can receive standard second-line therapy (DS-8201 or T-DM1) for metastatic HER2-positive in some parts of the world, including China, due to many factors, such as cost-benefit ratios. CASE A 51-year-old premenopausal woman was diagnosed with HER2-positive breast cancer. The pathological stage was ypT3N2M0 and stage IIIA. Trastuzumab targeted therapy combined with goserelin depot was started along with letrozole endocrine therapy. After eight courses of treatment, magnetic resonance imaging (MRI) examination revealed new multiple metastases in the liver, and progression disease (PD) was evaluated. Due to abnormal activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in the patient, treatment was changed to the mammalian target of rapamycin (mTOR) inhibitor combined with the anti-HER-2 agents inetetamab and paclitaxel, while partial response (PR) was evaluated after 6 cycles of treatment. As the patient was hormone receptor (HR) positive, treatment was changed to the inetetamab + rapamycin + exemestane regimen. The lesion continued to shrink and PR was evaluated for 8 cycles. The original regimen was continued, PR was evaluated after 12 courses of treatment. The abdominal MRI performed showed an increase in the volume of intrahepatic multiple metastatic tumor lesion. Efficacy was used to assess for PD and the progression-free survival (PFS) was 317 days. CONCLUSION A phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation in trastuzumab-treated metastatic HER2-positive breast cancer female had a long PFS by treating with the mammalian target of rapamycin inhibitor in combination with the anti-HER-2 agent inetetamab.
Collapse
Affiliation(s)
- Aijuan Wang
- Department of OncologyAnqing Municipal HospitalAnqingAnhuiChina
| | - Chenghui Li
- Department of OncologyAnqing Municipal HospitalAnqingAnhuiChina
| | - Qi'an Jiang
- Department of OncologyAnqing Municipal HospitalAnqingAnhuiChina
| | - Shu Jiang
- Department of OncologyAnqing Municipal HospitalAnqingAnhuiChina
| |
Collapse
|
4
|
Jin J, Yoshimura K, Sewastjanow-Silva M, Song S, Ajani JA. Challenges and Prospects of Patient-Derived Xenografts for Cancer Research. Cancers (Basel) 2023; 15:4352. [PMID: 37686627 PMCID: PMC10486659 DOI: 10.3390/cancers15174352] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
We discuss the importance of the in vivo models in elucidating cancer biology, focusing on the patient-derived xenograft (PDX) models, which are classic and standard functional in vivo platforms for preclinical evaluation. We provide an overview of the most representative models, including cell-derived xenografts (CDX), tumor and metastatic cell-derived xenografts, and PDX models utilizing humanized mice (HM). The orthotopic models, which could reproduce the cancer environment and its progression, similar to human tumors, are particularly common. The standard procedures and rationales of gastric adenocarcinoma (GAC) orthotopic models are addressed. Despite the significant advantages of the PDX models, such as recapitulating key features of human tumors and enabling drug testing in the in vivo context, some challenges must be acknowledged, including loss of heterogeneity, selection bias, clonal evolution, stroma replacement, tumor micro-environment (TME) changes, host cell carryover and contaminations, human-to-host cell oncogenic transformation, human and host viral infections, as well as limitations for immunologic research. To compensate for these limitations, other mouse models, such as syngeneic and humanized mouse models, are currently utilized. Overall, the PDX models represent a powerful tool in cancer research, providing critical insights into tumor biology and potential therapeutic targets, but their limitations and challenges must be carefully considered for their effective use. Lastly, we present an intronic quantitative PCR (qPCR) method to authenticate, detect, and quantify human/murine cells in cell lines and PDX samples.
Collapse
Affiliation(s)
| | | | | | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (K.Y.); (M.S.-S.)
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (K.Y.); (M.S.-S.)
| |
Collapse
|
5
|
Masud MA, Kim JY, Kim E. Modeling the effect of acquired resistance on cancer therapy outcomes. Comput Biol Med 2023; 162:107035. [PMID: 37276754 DOI: 10.1016/j.compbiomed.2023.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
Adaptive therapy (AT) is an evolution-based treatment strategy that exploits cell-cell competition. Acquired resistance can change the competitive nature of cancer cells in a tumor, impacting AT outcomes. We aimed to determine if adaptive therapy can still be effective with cell's acquiring resistance. We developed an agent-based model for spatial tumor growth considering three different types of acquired resistance: random genetic mutations during cell division, drug-induced reversible (plastic) phenotypic changes, and drug-induced irreversible phenotypic changes. These three resistance mechanisms lead to different spatial distributions of resistant cells. To quantify the spatial distribution, we propose an extension of Ripley's K-function, Sampled Ripley's K-function (SRKF), which calculates the non-randomness of the resistance distribution over the tumor domain. Our model predicts that the emergent spatial distribution of resistance can determine the time to progression under both adaptive and continuous therapy (CT). Notably, a high rate of random genetic mutations leads to quicker progression under AT than CT due to the emergence of many small clumps of resistant cells. Drug-induced phenotypic changes accelerate tumor progression irrespective of the treatment strategy. Low-rate switching to a sensitive state reduces the benefits of AT compared to CT. Furthermore, we also demonstrated that drug-induced resistance necessitates aggressive treatment under CT, regardless of the presence of cancer-associated fibroblasts. However, there is an optimal dose that can most effectively delay tumor relapse under AT by suppressing resistance. In conclusion, this study demonstrates that diverse resistance mechanisms can shape the distribution of resistance and thus determine the efficacy of adaptive therapy.
Collapse
Affiliation(s)
- M A Masud
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| |
Collapse
|
6
|
Hogstrom JM, Cruz KA, Selfors LM, Ward MN, Mehta TS, Kanarek N, Philips J, Dialani V, Wulf G, Collins LC, Patel JM, Muranen T. Simultaneous isolation of hormone receptor-positive breast cancer organoids and fibroblasts reveals stroma-mediated resistance mechanisms. J Biol Chem 2023; 299:105021. [PMID: 37423299 PMCID: PMC10415704 DOI: 10.1016/j.jbc.2023.105021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Recurrent hormone receptor-positive (HR+) breast cancer kills more than 600,000 women annually. Although HR+ breast cancers typically respond well to therapies, approximately 30% of patients relapse. At this stage, the tumors are usually metastatic and incurable. Resistance to therapy, particularly endocrine therapy is typically thought to be tumor intrinsic (e.g., estrogen receptor mutations). However, tumor-extrinsic factors also contribute to resistance. For example, stromal cells, such as cancer-associated fibroblasts (CAFs), residing in the tumor microenvironment, are known to stimulate resistance and disease recurrence. Recurrence in HR+ disease has been difficult to study due to the prolonged clinical course, complex nature of resistance, and lack of appropriate model systems. Existing HR+ models are limited to HR+ cell lines, a few HR+ organoid models, and xenograft models that all lack components of the human stroma. Therefore, there is an urgent need for more clinically relevant models to study the complex nature of recurrent HR+ breast cancer, and the factors contributing to treatment relapse. Here, we present an optimized protocol that allows a high take-rate, and simultaneous propagation of patient-derived organoids (PDOs) and matching CAFs, from primary and metastatic HR+ breast cancers. Our protocol allows for long-term culturing of HR+ PDOs that retain estrogen receptor expression and show responsiveness to hormone therapy. We further show the functional utility of this system by identifying CAF-secreted cytokines, such as growth-regulated oncogene α , as stroma-derived resistance drivers to endocrine therapy in HR+ PDOs.
Collapse
Affiliation(s)
- Jenny M Hogstrom
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kayla A Cruz
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madelyn N Ward
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tejas S Mehta
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordana Philips
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vandana Dialani
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerburg Wulf
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jaymin M Patel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taru Muranen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Devarasou S, Kang M, Kwon TY, Cho Y, Shin JH. Fibrous Matrix Architecture-Dependent Activation of Fibroblasts with a Cancer-Associated Fibroblast-like Phenotype. ACS Biomater Sci Eng 2023; 9:280-291. [PMID: 36573928 DOI: 10.1021/acsbiomaterials.2c00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most prevalent cell types within the tumor microenvironment (TME). While several physicochemical cues from the TME, including growth factors, cytokines, and ECM specificity, have been identified as essential factors for CAF activation, the precise mechanism of how the ECM architecture regulates CAF initiation remains elusive. Using a gelatin-based electrospun fiber mesh, we examined the effect of matrix fiber density on CAF activation induced by MCF-7 conditioned media (CM). A less dense (3D) gelatin mesh matrix facilitated better activation of dermal fibroblasts into a CAF-like phenotype in the CM than a highly dense (3D) gelatin mesh matrix. In addition, it was discovered that CAF activation on the less dense (LD) matrix is dependent on the cell size-related AKT/mTOR signaling cascade, accompanied by an increase in intracellular tension within the well-spread fibroblasts.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics 2022; 12:6576-6594. [PMID: 36185613 PMCID: PMC9516228 DOI: 10.7150/thno.78034] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Bone and soft tissue tumors are complex mesenchymal neoplasms that seriously endanger human health. Over the past decade, the relationship between microorganisms and human health and diseases is getting more attention. The extracellular vesicles derived from bacteria have been shown to regulate bacterial-host cell communication by transferring their contents, including nucleic acids, proteins, metabolites, lipopolysaccharides, and peptidoglycans. Bacteria extracellular vesicles (BEVs) are promising lipid-bilayer nanocarriers for the treatment of many diseases due to their low toxicity, drug loading capacity, ease of modification and industrialization. Specially, BEVs-based cancer therapy has attracted much attention because of their ability to effectively stimulate immune responses. In this review, we provide an overview of the biogenesis, composition, isolation, classification, and internalization of BEVs. We then comprehensively summarize the sources of BEVs in cancer therapy and the BEVs-related cancer treatment strategies. We further highlight the great potential of BEVs in bone and soft tissue tumors. Finally, we conclude the major advantages and challenges of BEVs-based cancer therapy. We believe that the comprehensive understanding of BEVs in the field of cancer therapy will generate innovative solutions to bone and soft tissue tumors and achieve clinical applications.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
10
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
12
|
Jabbarzadeh Kaboli P, Luo S, Chen Y, Jomhori M, Imani S, Xiang S, Wu Z, Li M, Shen J, Zhao Y, Wu X, Hin Cho C, Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene X 2022; 816:146171. [PMID: 35026293 DOI: 10.1016/j.gene.2021.146171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, ROC.
| | - Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
13
|
p70 S6 kinase as a therapeutic target in cancers: More than just an mTOR effector. Cancer Lett 2022; 535:215593. [PMID: 35176419 DOI: 10.1016/j.canlet.2022.215593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
p70 S6 kinase (p70S6K) is best-known for its regulatory roles in protein synthesis and cell growth by phosphorylating its primary substrate, ribosomal protein S6, upon mitogen stimulation. The enhanced expression/activation of p70S6K has been correlated with poor prognosis in some cancer types, suggesting that it may serve as a biomarker for disease monitoring. p70S6K is a critical downstream effector of the oncogenic PI3K/Akt/mTOR pathway and its activation is tightly regulated by an ordered cascade of Ser/Thr phosphorylation events. Nonetheless, it should be noted that other upstream mechanisms regulating p70S6K at both the post-translational and post-transcriptional levels also exist. Activated p70S6K could promote various aspects of cancer progression such as epithelial-mesenchymal transition, cancer stemness and drug resistance. Importantly, novel evidence showing that p70S6K may also regulate different cellular components in the tumor microenvironment will be discussed. Therapeutic targeting of p70S6K alone or in combination with traditional chemotherapies or other microenvironmental-based drugs such as immunotherapy may represent promising approaches against cancers with aberrant p70S6K signaling. Currently, the only clinically available p70S6K inhibitors are rapamycin analogs (rapalogs) which target mTOR. However, there are emerging p70S6K-selective drugs which are going through active preclinical or clinical trial phases. Moreover, various screening strategies have been used for the discovery of novel p70S6K inhibitors, hence bringing new insights for p70S6K-targeted therapy.
Collapse
|
14
|
Thomas SC, Madaan T, Kamble NS, Siddiqui NA, Pauletti GM, Kotagiri N. Engineered Bacteria Enhance Immunotherapy and Targeted Therapy through Stromal Remodeling of Tumors. Adv Healthc Mater 2022; 11:e2101487. [PMID: 34738725 PMCID: PMC8770579 DOI: 10.1002/adhm.202101487] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Collapse
Affiliation(s)
- Shindu C. Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Tushar Madaan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nitin S. Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nabil A. Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Giovanni M. Pauletti
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, 1 Pharmacy Place, St. Louis, MO 63110, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Delinassios JG, Hoffman RM. The cancer-inhibitory effects of proliferating tumor-residing fibroblasts. Biochim Biophys Acta Rev Cancer 2021; 1877:188673. [PMID: 34953931 DOI: 10.1016/j.bbcan.2021.188673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Initiation, local progression, and metastasis of cancer are associated with specific morphological, molecular, and functional changes in the extracellular matrix and the fibroblasts within the tumor microenvironment (TME). In the early stages of tumor development, fibroblasts are an obstacle that cancer cells must surpass or nullify to progress. Thus, in early tumor progression, specific signaling from cancer cells activates bio-pathways, which abolish the innate anticancer properties of fibroblasts and convert a high proportion of them to tumor-promoting cancer-associated fibroblasts (CAFs). Following this initial event, a wide spectrum of gene expression changes gradually leads to the development of a stromal fibroblast population with complex heterogeneity, creating fibroblast subtypes with characteristic profiles, which may alternate between being tumor-promotive and tumor-suppressive, topologically and chronologically in the TME. These fibroblast subtypes form the tumor's histological landscape including areas of cancer growth, inflammation, angiogenesis, invasion fronts, proliferating and non-proliferating fibroblasts, cancer-cell apoptosis, fibroblast apoptosis, and necrosis. These features reflect general deregulation of tissue homeostasis within the TME. This review discusses fundamental and current knowledge that has established the existence of anticancer fibroblasts within the various interacting elements of the TME. It is proposed that the maintenance of fibroblast proliferation is an essential parameter for the activation of their anticancer capacity, similar to that by which normal fibroblasts would be activated in wound repair, thus maintaining tissue homeostasis. Encouragement of research in this direction may render new means of cancer therapy and a greater understanding of tumor progression.
Collapse
Affiliation(s)
- John G Delinassios
- International Institute of Anticancer Research, 1(st) km Kapandritiou-Kalamou Rd., Kapandriti, 19014 Attica, Greece.
| | - Robert M Hoffman
- Department of Surgery, University of California, 9300 Campus Point Drive, La Jolla, CA 92037, USA; AntiCancer Inc., 7917 Ostrow St, San Diego, CA 92111, USA.
| |
Collapse
|
16
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
17
|
Bernatowicz K, Grussu F, Ligero M, Garcia A, Delgado E, Perez-Lopez R. Robust imaging habitat computation using voxel-wise radiomics features. Sci Rep 2021; 11:20133. [PMID: 34635786 PMCID: PMC8505612 DOI: 10.1038/s41598-021-99701-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor heterogeneity has been postulated as a hallmark of treatment resistance and a cure constraint in cancer patients. Conventional quantitative medical imaging (radiomics) can be extended to computing voxel-wise features and aggregating tumor subregions with similar radiological phenotypes (imaging habitats) to elucidate the distribution of tumor heterogeneity within and among tumors. Despite the promising applications of imaging habitats, they may be affected by variability of radiomics features, preventing comparison and generalization of imaging habitats techniques. We performed a comprehensive repeatability and reproducibility analysis of voxel-wise radiomics features in more than 500 lung cancer patients with computed tomography (CT) images and demonstrated the effect of voxel-wise radiomics variability on imaging habitats computation in 30 lung cancer patients with test–retest images. Repeatable voxel-wise features characterized texture heterogeneity and were reproducible regardless of the applied feature extraction parameters. Imaging habitats computed using robust radiomics features were more stable than those computed using all features in test–retest CTs from the same patient. Nine voxel-wise radiomics features (joint energy, joint entropy, sum entropy, maximum probability, difference entropy, Imc1, Imc2, Idn and Idmn) were repeatable and reproducible. This supports their application for computing imaging habitats in lung tumors towards the discovery of previously unseen tumor heterogeneity and the development of novel non-invasive imaging biomarkers for precision medicine.
Collapse
Affiliation(s)
- Kinga Bernatowicz
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Alonso Garcia
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Eric Delgado
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain.,Radiology Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| |
Collapse
|
18
|
Hamalian S, Güth R, Runa F, Sanchez F, Vickers E, Agajanian M, Molnar J, Nguyen T, Gamez J, Humphries JD, Nayak A, Humphries MJ, Tchou J, Zervantonakis IK, Kelber JA. A SNAI2-PEAK1-INHBA stromal axis drives progression and lapatinib resistance in HER2-positive breast cancer by supporting subpopulations of tumor cells positive for antiapoptotic and stress signaling markers. Oncogene 2021; 40:5224-5235. [PMID: 34239043 PMCID: PMC8376636 DOI: 10.1038/s41388-021-01906-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Intercellular mechanisms by which the stromal microenvironment contributes to solid tumor progression and targeted therapy resistance remain poorly understood, presenting significant clinical hurdles. PEAK1 (Pseudopodium-Enriched Atypical Kinase One) is an actin cytoskeleton- and focal adhesion-associated pseudokinase that promotes cell state plasticity and cancer metastasis by mediating growth factor-integrin signaling crosstalk. Here, we determined that stromal PEAK1 expression predicts poor outcomes in HER2-positive breast cancers high in SNAI2 expression and enriched for MSC content. Specifically, we identified that the fibroblastic stroma in HER2-positive breast cancer patient tissue stains positive for both nuclear SNAI2 and cytoplasmic PEAK1. Furthermore, mesenchymal stem cells (MSCs) and cancer-associated fibroblasts (CAFs) express high PEAK1 protein levels and potentiate tumorigenesis, lapatinib resistance and metastasis of HER2-positive breast cancer cells in a PEAK1-dependent manner. Analysis of PEAK1-dependent secreted factors from MSCs revealed INHBA/activin-A as a necessary factor in the conditioned media of PEAK1-expressing MSCs that promotes lapatinib resistance. Single-cell CycIF analysis of MSC-breast cancer cell co-cultures identified enrichment of p-Akthigh/p-gH2AXlow, MCL1high/p-gH2AXlow and GRP78high/VIMhigh breast cancer cell subpopulations by the presence of PEAK1-expressing MSCs and lapatinib treatment. Bioinformatic analyses on a PEAK1-centric stroma-tumor cell gene set and follow-up immunostaining of co-cultures predict targeting antiapoptotic and stress pathways as a means to improve targeted therapy responses and patient outcomes in HER2-positive breast cancer and other stroma-rich malignancies. These data provide the first evidence that PEAK1 promotes tumorigenic phenotypes through a previously unrecognized SNAI2-PEAK1-INHBA stromal cell axis.
Collapse
Affiliation(s)
- Sarkis Hamalian
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Robert Güth
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Francesca Sanchez
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Eric Vickers
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Megan Agajanian
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Justin Molnar
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Tuan Nguyen
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Joshua Gamez
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Julia Tchou
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Rena Rowan Breast Center, Abramson Cancer Center, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis K Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Center for Bioengineering, Pittsburgh, PA, USA
| | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA, USA.
| |
Collapse
|
19
|
Maia A, Wiemann S. Cancer-Associated Fibroblasts: Implications for Cancer Therapy. Cancers (Basel) 2021; 13:3526. [PMID: 34298736 PMCID: PMC8307167 DOI: 10.3390/cancers13143526] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumour cells do not exist as an isolated entity. Instead, they are surrounded by and closely interact with cells of the environment they are emerged in. The tumour microenvironment (TME) is not static and several factors, including cancer cells and therapies, have been described to modulate several of its components. Fibroblasts are key elements of the TME with the capacity to influence tumour progression, invasion and response to therapy, which makes them attractive targets in cancer treatment. In this review, we focus on fibroblasts and their numerous roles in the TME with a special attention to recent findings describing their heterogeneity and role in therapy response. Furthermore, we explore how different therapies can impact these cells and their communication with cancer cells. Finally, we highlight potential strategies targeting this cell type that can be employed for improving patient outcome.
Collapse
Affiliation(s)
- Ana Maia
- German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Stefan Wiemann
- German Cancer Research Center (DKFZ), Division of Molecular Genome Analysis, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Fernández-Nogueira P, Fuster G, Gutierrez-Uzquiza Á, Gascón P, Carbó N, Bragado P. Cancer-Associated Fibroblasts in Breast Cancer Treatment Response and Metastasis. Cancers (Basel) 2021; 13:3146. [PMID: 34201840 PMCID: PMC8268405 DOI: 10.3390/cancers13133146] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biomedicine, School of Medicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
- Department of Biochemistry & Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Department of Biosciences, Faculty of Sciences and Technology, University of Vic, 08500 Vic, Spain
| | - Álvaro Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain; (G.F.); (P.G.); (N.C.)
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
21
|
Bragado P, Fernández-Nogueira P, Carbó N, Gascón P. Unraveling the role of fibroblasts, FGF5 and FGFR2 in HER2-targeted therapies resistance and tumor progression. Oncotarget 2020; 11:4541-4543. [PMID: 33346249 PMCID: PMC7733626 DOI: 10.18632/oncotarget.27829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/25/2022] Open
|
22
|
Tolerant/Persister Cancer Cells and the Path to Resistance to Targeted Therapy. Cells 2020; 9:cells9122601. [PMID: 33291749 PMCID: PMC7761971 DOI: 10.3390/cells9122601] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The capacity of cancer to adapt to treatment and evolve is a major limitation for targeted therapies. While the role of new acquired mutations is well-established, recent findings indicate that resistance can also arise from subpopulations of tolerant/persister cells that survive in the presence of the treatment. Different processes contribute to the emergence of these cells, including pathway rebound through the release of negative feedback loops, transcriptional rewiring mediated by chromatin remodeling and autocrine/paracrine communication among tumor cells and within the tumor microenvironment. In this review, we discuss the non-genetic mechanisms that eventually result in cancer resistance to targeted therapies, with a special focus on those involving changes in gene expression.
Collapse
|
23
|
Hurvitz SA, Caswell-Jin JL, McNamara KL, Zoeller JJ, Bean GR, Dichmann R, Perez A, Patel R, Zehngebot L, Allen H, Bosserman L, DiCarlo B, Kennedy A, Giuliano A, Calfa C, Molthrop D, Mani A, Chen HW, Dering J, Adams B, Kotler E, Press MF, Brugge JS, Curtis C, Slamon DJ. Pathologic and molecular responses to neoadjuvant trastuzumab and/or lapatinib from a phase II randomized trial in HER2-positive breast cancer (TRIO-US B07). Nat Commun 2020; 11:5824. [PMID: 33203854 PMCID: PMC7673127 DOI: 10.1038/s41467-020-19494-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
In this multicenter, open-label, randomized phase II investigator-sponsored neoadjuvant trial with funding provided by Sanofi and GlaxoSmithKline (TRIO-US B07, Clinical Trials NCT00769470), participants with early-stage HER2-positive breast cancer (N = 128) were recruited from 13 United States oncology centers throughout the Translational Research in Oncology network. Participants were randomized to receive trastuzumab (T; N = 34), lapatinib (L; N = 36), or both (TL; N = 58) as HER2-targeted therapy, with each participant given one cycle of this designated anti-HER2 therapy alone followed by six cycles of standard combination chemotherapy with the same anti-HER2 therapy. The primary objective was to estimate the rate of pathologic complete response (pCR) at the time of surgery in each of the three arms. In the intent-to-treat population, we observed similar pCR rates between T (47%, 95% confidence interval [CI] 30-65%) and TL (52%, 95% CI 38-65%), and a lower pCR rate with L (25%, 95% CI 13-43%). In the T arm, 100% of participants completed all protocol-specified treatment prior to surgery, as compared to 69% in the L arm and 74% in the TL arm. Tumor or tumor bed tissue was collected whenever possible pre-treatment (N = 110), after one cycle of HER2-targeted therapy alone (N = 89), and at time of surgery (N = 59). Higher-level amplification of HER2 and hormone receptor (HR)-negative status were associated with a higher pCR rate. Large shifts in the tumor, immune, and stromal gene expression occurred after one cycle of HER2-targeted therapy. In contrast to pCR rates, the L-containing arms exhibited greater proliferation reduction than T at this timepoint. Immune expression signatures increased in all arms after one cycle of HER2-targeted therapy, decreasing again by the time of surgery. Our results inform approaches to early assessment of sensitivity to anti-HER2 therapy and shed light on the role of the immune microenvironment in response to HER2-targeted agents.
Collapse
Affiliation(s)
- Sara A Hurvitz
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jennifer L Caswell-Jin
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine L McNamara
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gregory R Bean
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alejandra Perez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Lee Zehngebot
- Florida Cancer Specialists & Research Institute, Orlando, FL, USA
| | - Heather Allen
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| | | | - Brian DiCarlo
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Carmen Calfa
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Molthrop
- Florida Cancer Specialists & Research Institute, Orlando, FL, USA
| | | | - Hsiao-Wang Chen
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Judy Dering
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brad Adams
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eran Kotler
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
| | - Dennis J Slamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Zhang Y. The root cause of drug resistance in HER2-positive breast cancer and the therapeutic approaches to overcoming the resistance. Pharmacol Ther 2020; 218:107677. [PMID: 32898548 DOI: 10.1016/j.pharmthera.2020.107677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
HER2 is a well-known oncogenic receptor tyrosine kinase. HER2 gene amplification occurs in about 20% of breast cancer (BC), which leads to overexpression of HER2 protein, known as HER2-positive BC. Inhibitors of HER2 have significantly improved the prognosis of patients with this subset of BC. Since 1998, seven HER2 inhibitors have been developed to treat this disease. However, drug resistance is common and remains a major unresolved clinical problem. Patients typically show disease progression after some time on treatment. This review discusses the complexity and diversified nature of HER2 signaling, the mechanisms of actions and therapeutic activities of all HER2 inhibitors, the roles of HER2 and other signaling proteins in HER2-positive BC resistant to the inhibitors, the non-cell-autonomous mechanisms of drug resistance, and the heterogeneity of tumor HER2 expression. The review presents the concept that drug resistance in HER2-positive BC results primarily from the inability of HER2 inhibitors to deplete HER2. Emerging therapeutics that are promising for overcoming drug resistance are also discussed.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, USA.
| |
Collapse
|