1
|
Li T, Xing HM, Qian HD, Gao Q, Xu SL, Ma H, Chi ZL. Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury. Neural Regen Res 2025; 20:587-597. [PMID: 38819069 PMCID: PMC11317950 DOI: 10.4103/nrr.nrr-d-23-01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00034/figure1/v/2024-05-28T214302Z/r/image-tiff Several studies have found that transplantation of neural progenitor cells (NPCs) promotes the survival of injured neurons. However, a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application. Small extracellular vesicles (sEVs) contain bioactive molecules for neuronal protection and regeneration. Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases. In this study, we intravitreally transplanted sEVs derived from human induced pluripotent stem cells (hiPSCs) and hiPSCs-differentiated NPCs (hiPSC-NPC) in a mouse model of optic nerve crush. Our results show that these intravitreally injected sEVs were ingested by retinal cells, especially those localized in the ganglion cell layer. Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration, and regulated the retinal microenvironment by inhibiting excessive activation of microglia. Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells, which had protective effects on RGCs after optic nerve injury. These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hai-Dong Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiao Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Holden JM, Wareham LK, Calkins DJ. Morphological and electrophysiological characterization of a novel displaced astrocyte in the mouse retina. Glia 2024; 72:1356-1370. [PMID: 38591270 PMCID: PMC11081821 DOI: 10.1002/glia.24536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Astrocytes throughout the central nervous system are heterogeneous in both structure and function. This diversity leads to tissue-specific specialization where morphology is adapted to the surrounding neuronal circuitry, as seen in Bergman glia of the cerebellum and Müller glia of the retina. Because morphology can be a differentiating factor for cellular classification, we recently developed a mouse where glial-fibrillary acidic protein (GFAP)-expressing cells stochastically label for full membranous morphology. Here we utilize this tool to investigate whether morphological and electrophysiological features separate types of mouse retinal astrocytes. In this work, we report on a novel glial population found in the inner plexiform layer and ganglion cell layer which expresses the canonical astrocyte markers GFAP, S100β, connexin-43, Sox2 and Sox9. Apart from their retinal layer localization, these cells are unique in their radial distribution. They are notably absent from the mid-retina but are heavily concentrated near the optic nerve head, and to a lesser degree the peripheral retina. Additionally, their morphology is distinct from both nerve fiber layer astrocytes and Müller glia, appearing more similar to amacrine cells. Despite this structural similarity, these cells lack protein expression of common neuronal markers. Additionally, they do not exhibit action potentials, but rather resemble astrocytes and Müller glia in their small amplitude, graded depolarization to both light onset and offset. Their structure, protein expression, physiology, and intercellular connections suggest that these cells are astrocytic, displaced from their counterparts in the nerve fiber layer. As such, we refer to these cells as displaced retinal astrocytes.
Collapse
Affiliation(s)
- Joseph Matthew Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212
| | - Lauren Katie Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| | - David John Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
3
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
5
|
Wan Y, Wang H, Fan X, Bao J, Wu S, Liu Q, Yan X, Zhang J, Jin ZB, Xiao B, Wang N. Mechanosensitive channel Piezo1 is an essential regulator in cell cycle progression of optic nerve head astrocytes. Glia 2023; 71:1233-1246. [PMID: 36598105 DOI: 10.1002/glia.24334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Optic nerve head (ONH) astrocytes provide structural and metabolic support to neuronal axons in developmental, physiological, and pathological progression. Mechanosensitive properties of astrocytes allow them to sense and respond to mechanical cues from the local environment. We confirmed that ONH astrocytes express the mechanosensitive ion channel Piezo1 in vivo. By manipulating Piezo1 knockdown or overexpression in vitro, we found that Piezo1 is necessary but insufficient for ONH astrocyte proliferation. Loss of Piezo1 can lead to cell cycle arrest at G0/G1 phase, a possible mechanism involving decreased yes-associated protein (YAP) nuclear localization and downregulation of YAP-target cell cycle-associated factors, including cyclin D1 and c-Myc. Gene ontology enrichment analysis of differential expression genes from RNA-seq data indicates that the absence of Piezo1 affects biological processes involving cell division. Our results demonstrate that Piezo1 is an essential regulator in cell cycle progression in ONH astrocytes.
Collapse
Affiliation(s)
- Yue Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Haiping Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaowei Fan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Jiayu Bao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Xuejing Yan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Bernstein SL, Guo Y, Mehrabian Z, Miller NR. Neuroprotection and Neuroregeneration Strategies Using the rNAION Model: Theory, Histology, Problems, Results and Analytical Approaches. Int J Mol Sci 2022; 23:ijms232415604. [PMID: 36555246 PMCID: PMC9778957 DOI: 10.3390/ijms232415604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of sudden optic nerve (ON)-related vision loss in humans. Study of this disease has been limited by the lack of available tissue and difficulties in evaluating both treatments and the window of effectiveness after symptom onset. The rodent nonarteritic anterior ischemic optic neuropathy model (rNAION) closely resembles clinical NAION in its pathophysiological changes and physiological responses. The rNAION model enables analysis of the specific responses to sudden ischemic axonopathy and effectiveness of potential treatments. However, there are anatomic and genetic differences between human and rodent ON, and the inducing factors for the disease and the model are different. These variables can result in marked differences in lesion development between the two species, as well as in the possible responses to various treatments. These caveats are discussed in the current article, as well as some of the species-associated differences that may be related to ischemic lesion severity and responses.
Collapse
Affiliation(s)
- Steven L. Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3712
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
| | - Zara Mehrabian
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
| | - Neil R. Miller
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Becker SM, Tumminia SJ, Chiang MF. The NEI Audacious Goals Initiative: Advancing the Frontier of Regenerative Medicine. Transl Vis Sci Technol 2021; 10:2. [PMID: 34383880 PMCID: PMC8362633 DOI: 10.1167/tvst.10.10.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eight years since the launch of the National Eye Institute Audacious Goals Initiative for Regenerative Medicine, real progress has been made in the effort to restore vision by replacing retinal neurons. Although challenges remain, the infrastructure, tools, and preclinical models to support clinical studies in humans are being prepared. Building on the pioneering trials that are replacing the retinal pigment epithelium, it is expected that by the end of this decade first-in-human trials for the replacement of retinal neurons will be initiated.
Collapse
Affiliation(s)
- Steven M. Becker
- Office of Regenerative Medicine, National Eye Institute, Bethesda, Maryland, USA
| | - Santa J. Tumminia
- Office of the Director, National Eye Institute, Bethesda, Maryland, USA
| | - Michael F. Chiang
- Office of the Director, National Eye Institute, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease. Cells 2021; 10:cells10082045. [PMID: 34440814 PMCID: PMC8392301 DOI: 10.3390/cells10082045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.
Collapse
|
9
|
Soares R, Ribeiro FF, Lourenço DM, Rodrigues RS, Moreira JB, Sebastião AM, Morais VA, Xapelli S. The neurosphere assay: an effective in vitro technique to study neural stem cells. Neural Regen Res 2021; 16:2229-2231. [PMID: 33818505 PMCID: PMC8354118 DOI: 10.4103/1673-5374.310678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rita Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina; Instituto de Farmacologia e Neurociências, Faculdade de Medicina; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo M Lourenço
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa A Morais
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular João Lobo Antunes; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Xinyi S. Novel stem cell niche to preserve vision. Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.abd6011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neural derived cells in the optic nerve express multiple stem cell markers and can differentiate into multiple neural lineages.
Collapse
Affiliation(s)
- Su Xinyi
- Department of Ophthalmology, National University Singapore, Singapore 119228, Singapore; Department of Ophthalmology, National University Hospital, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore 138632, Singapore; Singapore Eye Research Institute, Singapore 169856, Singapore
| |
Collapse
|