1
|
Zwaan F, Brune S, Glerum AC, Vasey DA, Naliboff JB, Manatschal G, Gaucher EC. Rift-inversion orogens are potential hot spots for natural H 2 generation. SCIENCE ADVANCES 2025; 11:eadr3418. [PMID: 39970211 PMCID: PMC11838002 DOI: 10.1126/sciadv.adr3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Naturally occurring hydrogen gas (H2) represents a potential source of clean energy. A promising mechanism for large-scale natural H2 generation is serpentinization of exhumed mantle material. We study this serpentinization-related H2 generation during rifting and subsequent rift-inversion orogen development using numerical geodynamic models. Serpentinization-related H2 generation is best known from rifted margins and spreading ridges. However, because orogens are colder than rift environments, conditions for serpentinization and natural H2 generation are considerably better in orogenic settings: We find that yearly H2 generation capacity from serpentinization in the overriding mantle wedge during rift inversion may be up to 20 times larger than during rifting. Moreover, suitable reservoirs and seals required for economic H2 accumulations to form are readily available in rift-inversion orogens but are likely absent during bulk serpentinization in rift settings. Together with indications of ongoing natural H2 generation in the Balkans and Pyrenees, our model results provide a first-order motivation for natural H2 exploration in rift-inversion orogens.
Collapse
Affiliation(s)
- Frank Zwaan
- GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Sascha Brune
- GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | | | - Dylan A. Vasey
- Department of Earth and Climate Sciences, Tufts University, Medford, MA, USA
| | - John B. Naliboff
- Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | | | | |
Collapse
|
2
|
Kim HI, Moon I, Kim M, Lee HJ, Choi H, Uhm YR, Liu L, Kim J, Kim W. Characterization and quantification of iron species in the banded iron formations (BIFs) in China Craton to explore the potential for H2 production using XRD and Mössbauer spectroscopy. PLoS One 2025; 20:e0316540. [PMID: 39854444 PMCID: PMC11759399 DOI: 10.1371/journal.pone.0316540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 01/26/2025] Open
Abstract
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.%) and low Fe3⁺/Fetot ratios, representing a major source of ferrous iron on Earth. This study investigates the mineralogical and geochemical characteristics of iron ore samples from the Wugang and Hengyang BIFs in China using X-ray diffraction (XRD) and Mössbauer spectroscopy to examine H2 generation potential. XRD analysis and microscopic observations showed that the magnetite and hematite are the primary ore minerals in BIFs in China Craton. Mössbauer spectroscopic results provided the quantified information on the fractions of each iron species in varying minerals. Particularly, the Fe3+ tetrahedral sites and octahedral sites occupied by both Fe2+ and Fe3+ in magnetite and Fe3+ octahedral sites in hematite were determined. We estimated H₂ production potential by calculating the relative fraction of Fe2+ in magnetite relative to total number of iron atoms in the bulk samples from the Mössbauer results. The pyroxene-bearing BIF in Wugang (P-BIF) contains magnetite predominantly (~30.4 wt%), and the fraction of Fe2+ in magnetite is ~26%. Based on the quantified values, the maximum potential for H2 generation from P-BIF in Wugang could be ~630 mmol H₂/kg rock. Due to the variation of mineralogical composition depending on the types and locations of occurrence of BIF, the H2 generation potential also varies. For example, contrast to P-BIF in Wugang, the hematite-rich BIF from Hengyang, containing ~6.0 wt% of magnetite, showed significantly lower Fe2+ fraction in magnetite (~5%), resulting in low H2 potential (~120 mmol H₂/kg rock). This study presents that a prevalence of magnetite in BIFs has considerable potential for H₂ production due to low Fe3+/Fetot, suggesting that the magnetite-rich iron ore can be effectively utilized as the source of stimulated hydrogen production. The current results also highlight that the Mössbauer spectroscopy is essential to provide the database of relative fractions for each iron species in BIFs, which allows us to estimate the quantity of H2 released from BIFs.
Collapse
Affiliation(s)
- Hyo-Im Kim
- Department of Geology, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, Republic of Korea
| | - Inkyeong Moon
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Minkyeong Kim
- Department of Geology, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyuk Jun Lee
- Department of Geology, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyunkyung Choi
- HANARO Utilization Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Young Rang Uhm
- HANARO Utilization Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Lei Liu
- School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Jonguk Kim
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Wonnyon Kim
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| |
Collapse
|
3
|
Ellis GS, Gelman SE. Model predictions of global geologic hydrogen resources. SCIENCE ADVANCES 2024; 10:eado0955. [PMID: 39671493 PMCID: PMC11641016 DOI: 10.1126/sciadv.ado0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Geologic hydrogen could be a low-carbon primary energy resource; however, the magnitude of Earth's subsurface endowment has not yet been assessed. Knowledge of the occurrence and behavior of natural hydrogen on Earth has been combined with information from geologic analogs to construct a mass balance model to predict the resource potential. Given the associated uncertainty, stochastic model results predict a wide range of values for the potential in-place hydrogen resource [103 to 1010 million metric tons (Mt)] with the most probable value of ~5.6 × 106 Mt. Although most of this hydrogen is likely to be impractical to recover, a small fraction (e.g., 1 × 105 Mt) would supply the projected hydrogen needed to reach net-zero carbon emissions for ~200 years. This amount of hydrogen contains more energy (~1.4 × 1016 MJ) than all proven natural gas reserves on Earth (~8.4 × 1015 MJ). Study results demonstrate that further research into understanding the potential for geologic hydrogen resources is merited.
Collapse
Affiliation(s)
| | - Sarah E. Gelman
- Energy Resources Program, U.S. Geological Survey, Denver, CO, USA
| |
Collapse
|
4
|
Hassanpouryouzband A, Wilkinson M, Haszeldine RS. Hydrogen energy futures - foraging or farming? Chem Soc Rev 2024; 53:2258-2263. [PMID: 38323342 DOI: 10.1039/d3cs00723e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Exploration for commercially viable natural hydrogen accumulations within the Earth's crust, here compared to 'foraging' for wild food, holds promise. However, a potentially more effective strategy lies in the in situ artificial generation of hydrogen in natural underground reservoirs, akin to 'farming'. Both biotic and abiotic processes can be employed, converting introduced or indigenous components, gases, and nutrients into hydrogen. Through studying natural hydrogen-generating reactions, we can discern pathways for optimized engineering. Some reactions may be inherently slow, allowing for a 'seed and leave' methodology, where sites are infused with gases, nutrients, and specific bacterial strains, then left to gradually produce hydrogen. However, other reactions could offer quicker outcomes to harvest hydrogen. A crucial element of this strategy is our innovative concept of 'X' components-ranging from trace minerals to bioengineered microbes. These designed components enhance biotic and/or abiotic reactions and prove vital in accelerating hydrogen production. Drawing parallels with our ancestors' transition from hunter-gathering to agriculture, we propose a similar paradigm shift in the pursuit of hydrogen energy. As we transition towards a hydrogen-centric energy landscape, the amalgamation of geochemistry, advanced biology, and engineering emerges as a beacon, signalling a pathway towards a sustainable and transformative energy future.
Collapse
Affiliation(s)
| | - Mark Wilkinson
- School of Geosciences, University of Edinburgh, Grant Institute, West Main Road, Edinburgh EH9 3FE, UK.
| | - R Stuart Haszeldine
- School of Geosciences, University of Edinburgh, Grant Institute, West Main Road, Edinburgh EH9 3FE, UK.
| |
Collapse
|
5
|
Rampai MM, Mtshali CB, Seroka NS, Khotseng L. Hydrogen production, storage, and transportation: recent advances. RSC Adv 2024; 14:6699-6718. [PMID: 38405074 PMCID: PMC10884891 DOI: 10.1039/d3ra08305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
One such technology is hydrogen-based which utilizes hydrogen to generate energy without emission of greenhouse gases. The advantage of such technology is the fact that the only by-product is water. Efficient storage is crucial for the practical application of hydrogen. There are several techniques to store hydrogen, each with certain advantages and disadvantages. In gaseous hydrogen storage, hydrogen gas is compressed and stored at high pressures, requiring robust and expensive pressure vessels. In liquid hydrogen storage, hydrogen is cooled to extremely low temperatures and stored as a liquid, which is energy-intensive. Researchers are exploring advanced materials for hydrogen storage, including metal hydrides, carbon-based materials, metal-organic frameworks (MOFs), and nanomaterials. These materials aim to enhance storage capacity, kinetics, and safety. The hydrogen economy envisions hydrogen as a clean energy carrier, utilized in various sectors like transportation, industry, and power generation. It can contribute to decarbonizing sectors that are challenging to electrify directly. Hydrogen can play a role in a circular economy by facilitating energy storage, supporting intermittent renewable sources, and enabling the production of synthetic fuels and chemicals. The circular economy concept promotes the recycling and reuse of materials, aligning with sustainable development goals. Hydrogen availability depends on the method of production. While it is abundant in nature, obtaining it in a clean and sustainable manner is crucial. The efficiency of hydrogen production and utilization varies among methods, with electrolysis being a cleaner but less efficient process compared to other conventional methods. Chemisorption and physisorption methods aim to enhance storage capacity and control the release of hydrogen. There are various viable options that are being explored to solve these challenges, with one option being the use of a multilayer film of advanced metals. This work provides an overview of hydrogen economy as a green and sustainable energy system for the foreseeable future, hydrogen production methods, hydrogen storage systems and mechanisms including their advantages and disadvantages, and the promising storage system for the future. In summary, hydrogen holds great promise as a clean energy carrier, and ongoing research and technological advancements are addressing challenges related to production, storage, and utilization, bringing us closer to a sustainable hydrogen economy.
Collapse
Affiliation(s)
- M M Rampai
- Tandetron Laboratory, iThemba LABS, National Research Foundation P.O. Box 722 Somerset West 7129 South Africa
- Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| | - C B Mtshali
- Tandetron Laboratory, iThemba LABS, National Research Foundation P.O. Box 722 Somerset West 7129 South Africa
| | - N S Seroka
- Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
- Council for Science and Industrial Research Pretoria 0001 South Africa
| | - L Khotseng
- Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa
| |
Collapse
|
6
|
Nan J, Zhu K, Ren J, Yao W, Peng X. Assessing micrometer-scale contamination from organic materials in serpentinite analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166609. [PMID: 37657544 DOI: 10.1016/j.scitotenv.2023.166609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.
Collapse
Affiliation(s)
- Jingbo Nan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Kechen Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Jieji Ren
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqi Yao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China.
| | - Xiaotong Peng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, China.
| |
Collapse
|
7
|
Stone J, Edgar JO, Gould JA, Telling J. Tectonically-driven oxidant production in the hot biosphere. Nat Commun 2022; 13:4529. [PMID: 35941147 PMCID: PMC9360021 DOI: 10.1038/s41467-022-32129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic reconstructions of the common ancestor to all life have identified genes involved in H2O2 and O2 cycling. Commonly dismissed as an artefact of lateral gene transfer after oxygenic photosynthesis evolved, an alternative is a geological source of H2O2 and O2 on the early Earth. Here, we show that under oxygen-free conditions high concentrations of H2O2 can be released from defects on crushed silicate rocks when water is added and heated to temperatures close to boiling point, but little is released at temperatures <80 °C. This temperature window overlaps the growth ranges of evolutionary ancient heat-loving and oxygen-respiring Bacteria and Archaea near the root of the Universal Tree of Life. We propose that the thermal activation of mineral surface defects during geological fault movements and associated stresses in the Earth’s crust was a source of oxidants that helped drive the (bio)geochemistry of hot fractures where life first evolved. Researchers at Newcastle University have discovered a mechanism by which earthquakes create bursts of hydrogen peroxide and oxygen in hot underground fractures. These may have played a vital role in the early evolution and origin of life on Earth.
Collapse
Affiliation(s)
- Jordan Stone
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - John O Edgar
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Jamie A Gould
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Jon Telling
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
8
|
Gillilan RE. High-pressure SAXS, deep life, and extreme biophysics. Methods Enzymol 2022; 677:323-355. [DOI: 10.1016/bs.mie.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11030145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Offshore the emissions of dihydrogen are highlighted by the smokers along the oceanic ridges. Onshore in situ measurements in ophiolitic contexts and in old cratons have also proven the existence of numerous H2 emissive areas. When H2 emanations affect the soils, small depressions and vegetation gaps are observed. These depressions, called fairy circles, have similarities with the pockmark and vent structures recognized for long time in the sea floor when natural gas escapes but also differences. In this paper we present a statistic approach of the density, size, and shape of the fairy circles in various basins. New data from Brazil and Australia are compared to the existing database already gathered in Russia, USA, and again Brazil. The comparison suggests that Australia could be one of the most promising areas for H2 exploration, de facto a couple of wells already found H2, whereas they were drilled to look for hydrocarbons. The sum of areas from where H2 is seeping overpasses 45 km2 in Kangaroo Island as in the Yorke Peninsula. The size of the emitting structures, expressed in average diameter, varies from few meters to kilometers and the footprint expressed in % of the ground within the structures varies from 1 to 17%. However, globally the sets of fairy circles in the various basins are rather similar and one may consider that their characteristics are homogeneous and may help to characterize these H2 emitting zones. Two kinds of size repartitions are observed, one with two maxima (25 m and between 220 m ± 25%) one with a simple Gaussian shape with a single maximum around 175 m ± 20%. Various geomorphological characteristics allow us to differentiate depressions of the ground due to gas emissions from karstic dolines. The more relevant ones are their slope and the ratio diameter vs. depth. At the opposite of the pockmark structures observed on the seafloor for which exclusion zones have been described, the H2 emitting structures may intersect and they often growth by coalescence. These H2 emitting structures are always observed, up to now, above Archean or Neoproterozoic cratons; it suggests that anoxia at the time the sedimentation and iron content play a key role in the H2 sourcing.
Collapse
|
10
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
11
|
Abstract
All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.
Collapse
|
12
|
Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere. Proc Natl Acad Sci U S A 2020; 117:20453-20461. [PMID: 32817473 PMCID: PMC7456078 DOI: 10.1073/pnas.2003108117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrothermal fluid geochemistry exerts a key control on subseafloor microbial community structure and function. However, the effects of microbial metabolic activity, thermal decomposition of biomass, and abiotic reactions on geochemistry remain unconstrained. Depletions in molecular hydrogen and enrichments in methane in submarine hydrothermal mixing zones have been interpreted to reflect the influence of an active subseafloor biosphere. In contrast, our work reveals that these chemical shifts are driven by abiotic and thermogenic processes at temperatures beyond the limit for life. These findings have critical implications for constraining the extent to which global geochemical cycles can sustain a deep biosphere, and for the global molecular hydrogen budget. Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
Collapse
|
13
|
Balancing the hydrogen books. Nat Rev Chem 2020; 4:383. [PMID: 37127967 DOI: 10.1038/s41570-020-0206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|