1
|
Gulec B, Everest E, Uygunoglu U. Letter to the Editor Regarding "Spinocerebellar ataxia masquerading as multiple sclerosis, a case report". J Neuroimmunol 2025; 399:578523. [PMID: 39824041 DOI: 10.1016/j.jneuroim.2025.578523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Affiliation(s)
- Bade Gulec
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Elif Everest
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Ugur Uygunoglu
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Neurology, Istanbul, Turkey; Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Institute of Neurological Sciences, Neuroimmunology Division, Istanbul, Turkey.
| |
Collapse
|
2
|
Park JS, Kang M, Kim HB, Hong H, Lee J, Song Y, Hur Y, Kim S, Kim TK, Lee Y. The capicua-ataxin-1-like complex regulates Notch-driven marginal zone B cell development and sepsis progression. Nat Commun 2024; 15:10579. [PMID: 39632849 PMCID: PMC11618371 DOI: 10.1038/s41467-024-54803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Follicular B (FOB) and marginal zone B (MZB) cells are pivotal in humoral immune responses against pathogenic infections. MZB cells can exacerbate endotoxic shock via interleukin-6 secretion. Here we show that the transcriptional repressor capicua (CIC) and its binding partner, ataxin-1-like (ATXN1L), play important roles in FOB and MZB cell development. CIC deficiency reduces the size of both FOB and MZB cell populations, whereas ATXN1L deficiency specifically affects MZB cells. B cell receptor signaling is impaired only in Cic-deficient FOB cells, whereas Notch signaling is disrupted in both Cic-deficient and Atxn1l-deficient MZB cells. Mechanistically, ETV4 de-repression leads to inhibition of Notch1 and Notch2 transcription, thereby inhibiting MZB cell development in B cell-specific Cic-deficient (Cicf/f;Cd19-Cre) and Atxn1l-deficient (Atxn1lf/f;Cd19-Cre) mice. In Cicf/f;Cd19-Cre and Atxn1lf/f; Cd19-Cre mice, humoral immune responses and lipopolysaccharide-induced sepsis progression are attenuated but are restored upon Etv4-deletion. These findings highlight the importance of the CIC-ATXN1L complex in MZB cell development and may provide proof of principle for therapeutic targeting in sepsis.
Collapse
Affiliation(s)
- Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Minjung Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Han Bit Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wheeler D, Bezih M, Lannen N. Spinocerebellar ataxia masquerading as multiple sclerosis, a case report. J Neuroimmunol 2024; 393:578385. [PMID: 38852213 DOI: 10.1016/j.jneuroim.2024.578385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Darla Wheeler
- Corewell Health Neurology, Grand Rapids, MI, United States of America; Michigan State University College of Human Medicine, Grand Rapids, MI, United States of America.
| | - Mariam Bezih
- Michigan State University College of Human Medicine, Grand Rapids, MI, United States of America.
| | - Nicholas Lannen
- Corewell Health Neurology, Grand Rapids, MI, United States of America; Michigan State University College of Human Medicine, Grand Rapids, MI, United States of America.
| |
Collapse
|
4
|
Nasello M, Zancan V, Reniè R, Romano S, Buscarinu MC, Ristori G, Salvetti M, Bellucci G. Co-existence of Myelin Oligodendrocyte Glycoprotien Antibody-associated Disease (MOGAD) and Spinocerebellar Ataxia type 1 (SCA1): A case report. Neurol Sci 2024; 45:4067-4070. [PMID: 38512530 DOI: 10.1007/s10072-024-07479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Affiliation(s)
- Martina Nasello
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Valeria Zancan
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Roberta Reniè
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, Istituti Di Ricovero E Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy.
- Istituti Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Litberg TJ, Horowitz S. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. ACS Chem Biol 2024; 19:809-823. [PMID: 38477936 PMCID: PMC11149768 DOI: 10.1021/acschembio.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
| |
Collapse
|
6
|
Carver JJ, Lau KM, Puckett AE, Didonna A. Autoimmune demyelination alters hypothalamic transcriptome and endocrine function. J Neuroinflammation 2024; 21:12. [PMID: 38178091 PMCID: PMC10768476 DOI: 10.1186/s12974-023-03006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The hypothalamus is a brain structure that is deputed to maintain organism homeostasis by regulating autonomic function and hormonal production as part of the neuroendocrine system. Dysfunction in hypothalamic activity results in behavioral alterations, depression, metabolic syndromes, fatigue, and infertility. Remarkably, many of these symptoms are associated with multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) characterized by focal demyelination, immune cell infiltration into the brain parenchyma, and neurodegeneration. Furthermore, altered hormonal levels have been documented in MS patients, suggesting the putative involvement of hypothalamic deficits in MS clinical manifestations. Yet, a systematic analysis of hypothalamic function in response to neuroinflammatory stress is still lacking. To fill this gap, here we performed a longitudinal profiling of the hypothalamic transcriptome upon experimental autoimmune encephalomyelitis (EAE)-a murine disease model recapitulating key MS phenotypes at both histopathological and molecular levels. We show that changes in gene expression connected with an anti-inflammatory response start already at pre-onset and persist along EAE progression. Altered levels of hypothalamic neuropeptides were also detected, which possibly underlie homeostatic responses to stress and aberrant feeding behaviors. Last, a thorough investigation of the principal endocrine glands highlighted defects in the main steroidogenic pathways upon disease. Collectively, our findings corroborate the central role of hypothalamic dysfunction in CNS autoimmunity.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Kristy M Lau
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Alexandra E Puckett
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd., Greenville, NC, USA.
| |
Collapse
|
7
|
Neyal N, Keegan BM, Kantarci OH, Zeydan B. Coexistence of multiple sclerosis and spinocerebellar ataxia type-8. Mult Scler 2023; 29:1195-1198. [PMID: 37401111 PMCID: PMC10463917 DOI: 10.1177/13524585231180549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Cerebellar dysfunction is likely to cause severe and treatment-resistant disability in multiple sclerosis (MS). Certain spinocerebellar ataxia (SCA)-related alleles can increase MS susceptibility, and channel polymorphisms can impact disability measures. Following an index patient with the coexistence of MS and SCA Type-8 (SCA8) in the MS clinic, an institutional engine search for MS and hereditary ataxia coexistence was conducted but did not reveal any other cases. This extremely rare coexistence of MS and SCA8 in our index patient may be incidental; however, a yet-to-be-identified contribution of coexistent hereditary ataxia(s) to the susceptibility of a prominent progressive ataxia MS phenotype cannot be ruled out.
Collapse
Affiliation(s)
- Nur Neyal
- Nur Neyal Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - B Mark Keegan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Orhun H Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Burcu Zeydan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
- Women's Health Research Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
9
|
Ma Q, Oksenberg JR, Didonna A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1186-1194. [PMID: 35903875 PMCID: PMC9380165 DOI: 10.1002/acn3.51618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE ATXN1 encodes the polyglutamine protein ataxin-1, which we have demonstrated exerting an immunomodulatory function in the context of central nervous system (CNS) autoimmunity, in addition to its classical role in the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). In this study, we dissected the contribution of DNA methylation to the regulation of ATXN1 in multiple sclerosis (MS). METHODS We interrogated a DNA methylation dataset previously generated via bisulfate DNA sequencing (BS-seq) in sorted peripheral immune cytotypes (CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes) isolated from untreated MS patients at symptoms onset. RESULTS Here, we report that ATXN1 undergoes hypo-methylation at four distinct regions upon MS, exclusively in B cells. We also highlight how these differentially methylated sites overlap with other regulatory epigenetic marks and MS risk variants. Lastly, we employ luciferase assays to assess the functionality of these regions, showing that the loss of methylation leads to an increase in ATXN1 expression. INTERPRETATION Altogether, these findings provide biological insights into ataxin-1 regulation in the immune system as well as into the molecular mechanisms underlying MS risk.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of Anatomy and Cell BiologyEast Carolina UniversityGreenvilleNorth Carolina27834USA
| |
Collapse
|
10
|
Hong H, Lee J, Park GY, Kim S, Park J, Park JS, Song Y, Lee S, Kim TJ, Lee YJ, Roh TY, Kwok SK, Kim SW, Tan Q, Lee Y. Postnatal regulation of B-1a cell development and survival by the CIC-PER2-BHLHE41 axis. Cell Rep 2022; 38:110386. [PMID: 35172136 DOI: 10.1016/j.celrep.2022.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.
Collapse
Affiliation(s)
- Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Guk-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sujin Lee
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - You Jeong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
11
|
Shams H, Matsunaga A, Ma Q, Mofrad MR, Didonna A. Methylation at a conserved lysine residue modulates tau assembly and cellular functions. Mol Cell Neurosci 2022; 120:103707. [DOI: 10.1016/j.mcn.2022.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
|
12
|
Zhang S, Xiong H, Yang J, Yuan X. Pan-Cancer Analysis Reveals the Multidimensional Expression and Prognostic and Immunologic Roles of VSTM2L in Cancer. Front Mol Biosci 2022; 8:792154. [PMID: 35155565 PMCID: PMC8829123 DOI: 10.3389/fmolb.2021.792154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy can improve survival in a variety of cancers by modulating the interaction between tumors and the tumor immune microenvironment (TIME). V-set and transmembrane domain containing 2 like (VSTM2L) regulates interleukin (IL)-4 signaling pathway—which involves immune-related factors—and has been linked to some cancers. However, the expression profile and prognostic significance of VSTM2L in different cancers as well as its relationship to the TIME are not known. This study investigated the pan-cancer expression profile, prognostic value, and immunologic relevance of VSTM2L. VSTM2L expression in different cancers was analyzed using the Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), Tumor Immune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), and Genotype–Tissue Expression (GTEx) portal. We examined the association between VSTM2L expression and clinical outcomes by Kaplan–Meier and Cox regression analyses using TCGA and Kaplan–Meier Plotter, and the results were validated in a Gene Expression Omnibus cohort. The correlations between VSTM2L expression and immune cell infiltration, immunomodulators, tumor mutation burden (TMB), microsatellite instability (MSI), and immune and stromal scores across cancers were analyzed using TCGA, TIMER, and Tumor–Immune System Interactions and Drugbank databases (TISIDB). The results showed that VSTM2L expression varied across cancers and its aberrant expression was associated with clinical outcomes: upregulation of VSTM2L was positively associated with advanced stage and reduced overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), and disease-free interval (DFI) in stomach adenocarcinoma (STAD); and its upregulation was associated with early-stage disease and improved OS, DSS, PFI, and DFI in kidney renal papillary cell carcinoma (KIRP). VSTM2L expression level was correlated with immune cell infiltration, expression of immunomodulators, TMB, MSI, and immune and stromal scores in multiple cancers. In conclusion, VSTM2L has prognostic value in various cancers and can predict both poor (STAD) and good (KIRP) outcomes. The relationship between VSTM2L expression and immune markers suggests a role in modulating the TIME.
Collapse
Affiliation(s)
- Shuyi Zhang
- Department of Oncology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hailin Xiong
- Department of Oncology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jiahui Yang
- Prenatal Diagnosis Center, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xia Yuan
- Department of Oncology, Huizhou Municipal Central Hospital, Huizhou, China
- *Correspondence: Xia Yuan,
| |
Collapse
|
13
|
Genetics and functional genomics of multiple sclerosis. Semin Immunopathol 2022; 44:63-79. [PMID: 35022889 DOI: 10.1007/s00281-021-00907-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease with genetic predisposition. Over the last decade, genome-wide association studies with increasing sample size led to the discovery of robustly associated genetic variants at an exponential rate. More than 200 genetic loci have been associated with MS susceptibility and almost half of its heritability can be accounted for. However, many challenges and unknowns remain. Definitive studies of disease progression and endophenotypes are yet to be performed, whereas the majority of the identified MS variants are not yet functionally characterized. Despite these shortcomings, the unraveling of MS genetics has opened up a new chapter on our understanding MS causal mechanisms.
Collapse
|
14
|
Gkekas I, Gioran A, Boziki MK, Grigoriadis N, Chondrogianni N, Petrakis S. Oxidative Stress and Neurodegeneration: Interconnected Processes in PolyQ Diseases. Antioxidants (Basel) 2021; 10:antiox10091450. [PMID: 34573082 PMCID: PMC8471619 DOI: 10.3390/antiox10091450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative polyglutamine (polyQ) disorders are caused by trinucleotide repeat expansions within the coding region of disease-causing genes. PolyQ-expanded proteins undergo conformational changes leading to the formation of protein inclusions which are associated with selective neuronal degeneration. Several lines of evidence indicate that these mutant proteins are associated with oxidative stress, proteasome impairment and microglia activation. These events may correlate with the induction of inflammation in the nervous system and disease progression. Here, we review the effect of polyQ-induced oxidative stress in cellular and animal models of polyQ diseases. Furthermore, we discuss the interplay between oxidative stress, neurodegeneration and neuroinflammation using as an example the well-known neuroinflammatory disease, Multiple Sclerosis. Finally, we review some of the pharmaceutical interventions which may delay the onset and progression of polyQ disorders by targeting disease-associated mechanisms.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Marina Kleopatra Boziki
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2311257525
| |
Collapse
|
15
|
Ma Q, Didonna A. The novel multiple sclerosis susceptibility gene ATXN1 regulates B cell receptor signaling in B-1a cells. Mol Brain 2021; 14:19. [PMID: 33478569 PMCID: PMC7819313 DOI: 10.1186/s13041-020-00715-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by complex gene-environment interactions. ATXN1 maps to 6p22.3, within the 233 loci associated with an increased risk of developing MS. Toxic gain-of-function mutations in ATXN1 cause the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). Conversely, ATXN1 loss-of-function is involved in Alzheimer's disease (AD) and tumorigenesis. We have recently shown that ATXN1 exerts a protective immunomodulatory activity in the MS model experimental autoimmune encephalomyelitis (EAE). Specifically, we demonstrated that mice lacking Atxn1 experience aggravated EAE due to aberrant B cell functions. Atxn1-null mice exhibit increased B cell proliferation with the concomitant expansion of specific B cell subsets including B-1a cells. This population of B cells is responsible for the production of natural immunoglobulins and has been associated with the etiology of multiple autoimmune diseases. To understand the role played by Atxn1 in these cells, we performed comprehensive transcriptomic profiling of Atxn1-null B-1a cells before and after stimulation with an encephalitogenic antigen. Importantly, we show that in this sub-population Atxn1 regulates immunoglobulin gene transcription and signaling through the B cell receptor (BCR).
Collapse
Affiliation(s)
- Qin Ma
- Department of Neurology, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alessandro Didonna
- Department of Neurology, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
16
|
Renschen A, Matsunaga A, Oksenberg JR, Santaniello A, Didonna A. TopoDB: a novel multifunctional management system for laboratory animal colonies. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5989500. [PMID: 33206961 PMCID: PMC7673335 DOI: 10.1093/database/baaa098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 11/14/2022]
Abstract
Animal models are widely employed in basic research to test mechanistic hypotheses in a complex biological environment as well as to evaluate the therapeutic potential of candidate compounds in preclinical settings. Rodents, and in particular mice, represent the most common in vivo models for their small size, short lifespan and possibility to manipulate their genome. Over time, a typical laboratory will develop a substantial number of inbred strains and transgenic mouse lines, requiring a substantial effort, in both logistic and economic terms, to maintain an animal colony for research purposes and to safeguard the integrity of results. To meet this need, here we present TopoDB, a robust and extensible web-based platform for the rational management of laboratory animals. TopoDB allows an easy tracking of individual animals within the colony and breeding protocols as well as the convenient storage of both genetic and phenotypic data generated in the different experiments. Altogether, these features facilitate and enhance the design of in vivo research, thus reducing the number of necessary animals and the housing costs. In summary, TopoDB represents a novel valuable tool in modern biomedical research. Database URL: https://github.com/UCSF-MS-DCC/TopoDB.
Collapse
Affiliation(s)
- Adam Renschen
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Atsuko Matsunaga
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam Santaniello
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|