1
|
Skelly E, Bayard CJ, Jarusek J, Clark B, Rebolledo LP, Radwan Y, Nguyen P, Andrade-Muñoz M, Deaton TA, Lushnikov A, LeBlanc SJ, Krasnoslobodtsev AV, Yingling YG, Afonin KA. Design and Characterization of DNA-Driven Condensates: Regulating Topology, Mechanical Properties, and Immunorecognition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22322-22336. [PMID: 40168179 PMCID: PMC12012714 DOI: 10.1021/acsami.5c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
Cells maintain spatiotemporal control over biochemical processes through the formation and dissolution of biomolecular condensates, dynamic membraneless organelles formed via liquid-liquid phase separation. Composed primarily of proteins and nucleic acids, these condensates regulate key cellular functions, and their properties are influenced by the concentration and type of molecules involved. The structural versatility challenges the de novo design and assembly of condensates with predefined properties. Through feedback between computational and experimental approaches, we introduce a modular system for assembling condensates using nucleic acid nanotechnology. By utilizing programmable oligonucleotides and orthogonal synthesis methods, we control the structural parameters, responsive behavior, and immunorecognition of the products. Dissipative particle dynamics simulations predict some conditions to produce larger, well-defined condensates with compact, globular cores, while others result in smaller, more diffuse analogs. Fluorescence microscopy confirms these findings and microrheology demonstrates the viscoelastic adaptability of tested condensates. Nucleases trigger disruption of structures, and ethidium bromide intercalation protects condensates from digestion. Immunostimulatory assays suggest condensate-specific activation of the IRF pathway via cGAS-STING signaling. This study provides a framework for developing biomolecular condensates with customizable properties and immunorecognition for various biological applications.
Collapse
Affiliation(s)
- Elizabeth Skelly
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Christina J. Bayard
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joel Jarusek
- Department
of Physics, University of Nebraska Omaha, Omaha, Nebraska 68182, United States
| | - Benjamin Clark
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United
States
| | - Laura P. Rebolledo
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Yasmine Radwan
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Phong Nguyen
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Melanie Andrade-Muñoz
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Thomas A. Deaton
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexander Lushnikov
- Department
of Physics, University of Nebraska Omaha, Omaha, Nebraska 68182, United States
| | - Sharonda J. LeBlanc
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United
States
| | | | - Yaroslava G. Yingling
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kirill A. Afonin
- Chemistry
and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Lychko I, Padrão I, Eva AV, Domingos CAO, Costa HMAD, Dias AMGC, Roque ACA. Cephalopod proteins for bioinspired and sustainable biomaterials design. Mater Today Bio 2025; 31:101644. [PMID: 40130040 PMCID: PMC11931252 DOI: 10.1016/j.mtbio.2025.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Nature offers a boundless source of inspiration for designing bio-inspired technologies and advanced materials. Cephalopods, including octopuses, squids, and cuttlefish, exhibit remarkable biological adaptations, such as dynamic camouflage for predator evasion and communication, as well as robust prey-capturing tools, including beaks and sucker-ring teeth that operate under extreme mechanical stresses in aqueous environments. Central to these remarkable traits are structural proteins that serve as versatile polymeric materials. From a materials science perspective, proteins present unique opportunities due to their genetically encoded sequences, enabling access to a diversity of sequences and precise control over polymer composition and properties. This intrinsic programmability allows scalable, environmentally sustainable production through recombinant biotechnology, in contrast to petroleum-derived polymers. This review highlights recent advances in understanding cephalopod-specific proteins, emphasizing their potential for creating next-generation bioengineered materials and driving sustainable innovation in biomaterials science.
Collapse
Affiliation(s)
- Iana Lychko
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Inês Padrão
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Afonso Vicente Eva
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Alexandra Oliveira Domingos
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Henrique Miguel Aljustrel da Costa
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Margarida Gonçalves Carvalho Dias
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Cecília Afonso Roque
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
3
|
Gordon R, Levenson R, Malady B, Al Sabeh Y, Nguyen A, Morse DE. Charge screening and hydrophobicity drive progressive assembly and liquid-liquid phase separation of reflectin protein. J Biol Chem 2025; 301:108277. [PMID: 39922493 PMCID: PMC11927725 DOI: 10.1016/j.jbc.2025.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The intrinsically disordered reflectin proteins drive tunable reflectivity for dynamic camouflage and communication in the recently evolved Loliginidae family of squid. Previous work revealed that reflectin A1 forms discrete assemblies whose size is precisely predicted by protein net charge density and charge screening by the local anion concentration. Using dynamic light scattering, FRET, and confocal microscopy, we show that these assemblies, of which 95 to 99% of bulk protein in solution is partitioned into, are dynamic intermediates to liquid protein-dense condensates formed by liquid-liquid phase separation (LLPS). Increasing salt concentration drives this progression by anionic screening of the cationic protein's Coulombic repulsion, and by increasing the contribution of the hydrophobic effect which tips the balance between short-range attraction and long-range repulsion to drive protein assembly and ultimately LLPS. Measuring fluorescence recovery after photobleaching and droplet fusion dynamics, we demonstrate that reflectin diffusivity in condensates is tuned by protein net charge density. These results illuminate the physical processes governing reflectin A1 assembly and LLPS and demonstrate the potential for reflectin A1 condensate-based tunable biomaterials. They also compliment previous observations of liquid phase separation in the Bragg lamellae of activated iridocytes and suggest that LLPS behavior may serve a critical role in governing the tunable and reversible dehydration of the membrane-bounded Bragg lamellae and vesicles containing reflectin in biophotonically active cells.
Collapse
Affiliation(s)
- Reid Gordon
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| | - Robert Levenson
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Brandon Malady
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Yahya Al Sabeh
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Alan Nguyen
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| |
Collapse
|
4
|
Chu C, Sun W, Chen S, Jia Y, Ni Y, Wang S, Han Y, Zuo H, Chen H, You Z, Zhu M. Squid-Inspired Anti-Salt Skin-Like Elastomers With Superhigh Damage Resistance for Aquatic Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406480. [PMID: 39267419 DOI: 10.1002/adma.202406480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Cephalopod skins evolve multiple functions in response to environmental adaptation, encompassing nonlinear mechanoreponse, damage tolerance property, and resistance to seawater. Despite tremendous progress in skin-mimicking materials, the integration of these desirable properties into a single material system remains an ongoing challenge. Here, drawing inspiration from the structure of reflectin proteins in cephalopod skins, a long-term anti-salt elastomer with skin-like nonlinear mechanical properties and extraordinary damage resistance properties is presented. Cation-π interaction is incorporated to induce the geometrically confined nanophases of hydrogen bond domains, resulting in elastomers with exceptional true tensile strength (456.5 ± 68.9 MPa) and unprecedently high fracture energy (103.7 ± 45.7 kJ m-2). Furthermore, the cation-π interaction effectively protects the hydrogen bond domains from corrosion by high-concentration saline solution. The utilization of the resultant skin-like elastomer has been demonstrated by aquatic soft robotics capable of grasping sharp objects. The combined advantages render the present elastomer highly promising for salt enviroment applications, particularly in addressing the challenges posed by sweat, in vivo, and harsh oceanic environments.
Collapse
Affiliation(s)
- Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shuo Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shaofan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufei Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Han Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Huang TC, Levenson R, Li Y, Kohl P, Morse DE, Shell MS, Helgeson ME. A colloidal model for the equilibrium assembly and liquid-liquid phase separation of the reflectin A1 protein. Biophys J 2024; 123:3065-3079. [PMID: 38965780 PMCID: PMC11427776 DOI: 10.1016/j.bpj.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Reflectin is an intrinsically disordered protein known for its ability to modulate the biophotonic camouflage of cephalopods based on its assembly-induced osmotic properties. Its reversible self-assembly into discrete, size-controlled clusters and condensed droplets are known to depend sensitively on the net protein charge, making reflectin stimuli-responsive to pH, phosphorylation, and electric fields. Despite considerable efforts to characterize this behavior, the detailed physical mechanisms of reflectin's assembly are not yet fully understood. Here, we pursue a coarse-grained molecular understanding of reflectin assembly using a combination of experiments and simulations. We hypothesize that reflectin assembly and phase behavior can be explained from a remarkably simple colloidal model whereby individual protein monomers effectively interact via a short-range attractive and long-range repulsive (SA-LR) pair potential. We parameterize a coarse-grained SA-LR interaction potential for reflectin A1 from small-angle x-ray scattering measurements, and then extend it to a range of pH values using Gouy-Chapman theory to model monomer-monomer electrostatic interactions. The pH-dependent SA-LR interaction is then used in molecular dynamics simulations of reflectin assembly, which successfully capture a number of qualitative features of reflectin, including pH-dependent formation of discrete-sized nanoclusters and liquid-liquid phase separation at high pH, resulting in a putative phase diagram for reflectin. Importantly, we find that at low pH size-controlled reflectin clusters are equilibrium assemblies, which dynamically exchange protein monomers to maintain an equilibrium size distribution. These findings provide a mechanistic understanding of the equilibrium assembly of reflectin, and suggest that colloidal-scale models capture key driving forces and interactions to explain thermodynamic aspects of native reflectin behavior. Furthermore, the success of SA-LR interactions presented in this study demonstrates the potential of a colloidal interpretation of interactions and phenomena in a range of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Tse-Chiang Huang
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Robert Levenson
- Life Sciences, Soka University of America, Aliso Viejo, California
| | - Youli Li
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California
| | - Phillip Kohl
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California
| | - M Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California.
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California.
| |
Collapse
|
6
|
Zhang J, Wang P, Xie W, Wang H, Zhang Y, Zhou H. Cephalopod-Inspired Nanomaterials for Optical and Thermal Regulation: Mechanisms, Applications and Perspectives. ACS NANO 2024; 18:24741-24769. [PMID: 39177374 DOI: 10.1021/acsnano.4c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The manipulation of interactions between light and matter plays a crucial role in the evolution of organisms and a better life for humans. As a result of natural selection, precise light-regulatory systems of biology have been engineered that provide many powerful and promising bioinspired strategies. As the "king of disguise", cephalopods, which can perfectly control the propagation of light and thus achieve excellent surrounding-matching via their delicate skin structure, have made themselves an exciting source of inspiration for developing optical and thermal regulation nanomaterials. This review presents cutting-edge advancements in cephalopod-inspired optical and thermal regulation nanomaterials, highlighting the key milestones and breakthroughs achieved thus far. We begin with the underlying mechanisms of the adaptive color-changing ability of cephalopods, as well as their special hierarchical skin structure. Then, different types of bioinspired nanomaterials and devices are comprehensively summarized. Furthermore, some advanced and emerging applications of these nanomaterials and devices, including camouflage, thermal management, pixelation, medical health, sensing and wireless communication, are addressed. Finally, some remaining but significant challenges and potential directions for future work are discussed. We anticipate that this comprehensive review will promote the further development of cephalopod-inspired nanomaterials for optical and thermal regulation and trigger ideas for bioinspired design of nanomaterials in multidisciplinary applications.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Pan Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Weirong Xie
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Haoyu Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Yifan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| |
Collapse
|
7
|
Levenson R, Malady B, Lee T, Al Sabeh Y, Gordon MJ, Morse DE. Protein Charge Neutralization Is the Proximate Driver Dynamically Tuning Reflectin Assembly. Int J Mol Sci 2024; 25:8954. [PMID: 39201640 PMCID: PMC11354490 DOI: 10.3390/ijms25168954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Reflectin is a cationic, block copolymeric protein that mediates the dynamic fine-tuning of color and brightness of light reflected from nanostructured Bragg reflectors in iridocyte skin cells of squids. In vivo, the neuronally activated phosphorylation of reflectin triggers its assembly, driving osmotic dehydration of the membrane-bounded Bragg lamellae containing the protein to simultaneously shrink the lamellar thickness and spacing while increasing their refractive index contrast, thus tuning the wavelength and increasing the brightness of reflectance. In vitro, we show that the reduction in repulsive net charge of the purified, recombinant reflectin-either (for the first time) by generalized anionic screening with salt or by pH titration-drives a finely tuned, precisely calibrated increase in the size of the resulting multimeric assemblies. The calculated effects of phosphorylation in vivo are consistent with these effects observed in vitro. The precise proportionality between the assembly size and charge neutralization is enabled by the demonstrated rapid dynamic arrest of multimer growth by a continual, equilibrium tuning of the balance between the protein's Coulombic repulsion and short-range interactive forces. The resulting stability of reflectin assemblies with time ensures a reciprocally precise control of the particle number concentration, encoding a precise calibration between the extent of neuronal signaling, osmotic pressure, and the resulting optical changes. The charge regulation of reflectin assembly precisely fine-tunes a colligative property-based nanostructured biological machine. A physical mechanism is proposed.
Collapse
Affiliation(s)
- Robert Levenson
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Brandon Malady
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Tyler Lee
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Yahya Al Sabeh
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Michael J. Gordon
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | - Daniel E. Morse
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| |
Collapse
|
8
|
Dias AMGC, Moreira IP, Lychko I, Lopes Soares C, Nurrito A, Moura Barbosa AJ, Lutz-Bueno V, Mezzenga R, Carvalho AL, Pina AS, Roque ACA. Hierarchical self-assembly of a reflectin-derived peptide. Front Chem 2023; 11:1267563. [PMID: 37810582 PMCID: PMC10552760 DOI: 10.3389/fchem.2023.1267563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Reflectins are a family of intrinsically disordered proteins involved in cephalopod camouflage, making them an interesting source for bioinspired optical materials. Understanding reflectin assembly into higher-order structures by standard biophysical methods enables the rational design of new materials, but it is difficult due to their low solubility. To address this challenge, we aim to understand the molecular self-assembly mechanism of reflectin's basic unit-the protopeptide sequence YMDMSGYQ-as a means to understand reflectin's assembly phenomena. Protopeptide self-assembly was triggered by different environmental cues, yielding supramolecular hydrogels, and characterized by experimental and theoretical methods. Protopeptide films were also prepared to assess optical properties. Our results support the hypothesis for the protopeptide aggregation model at an atomistic level, led by hydrophilic and hydrophobic interactions mediated by tyrosine residues. Protopeptide-derived films were optically active, presenting diffuse reflectance in the visible region of the light spectrum. Hence, these results contribute to a better understanding of the protopeptide structural assembly, crucial for the design of peptide- and reflectin-based functional materials.
Collapse
Affiliation(s)
- Ana Margarida Gonçalves Carvalho Dias
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Inês Pimentel Moreira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Iana Lychko
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cátia Lopes Soares
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Arianna Nurrito
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Arménio Jorge Moura Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Viviane Lutz-Bueno
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Ana Luísa Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ana Sofia Pina
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ana Cecília Afonso Roque
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
9
|
Bogdanov G, Chatterjee A, Makeeva N, Farrukh A, Gorodetsky AA. Squid leucophore-inspired engineering of optically dynamic human cells. iScience 2023; 26:106854. [PMID: 37519901 PMCID: PMC10372739 DOI: 10.1016/j.isci.2023.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 08/01/2023] Open
Abstract
Cephalopods (e.g., squids, octopuses, and cuttlefishes) possess remarkable dynamic camouflage abilities and therefore have emerged as powerful sources of inspiration for the engineering of dynamic optical technologies. Within this context, we have focused on the development of engineered living systems that can emulate the tunable optical characteristics of some squid skin cells. Herein, we expand our ability to controllably incorporate reflectin-based structures within mammalian cells via genetic engineering methods, and demonstrate that such structures can facilitate holotomographic and standard microscopy imaging of the cells. Moreover, we show that the reflectin-based structures within our cells can be reconfigured with a straightforward chemical stimulus, and we quantify the stimulus-induced changes observed for the structures at the single cell level. The reported findings may enable a better understanding of the color- and appearance-changing capabilities of some cephalopod skin cells and could afford opportunities for reflectins as molecular probes in the fields of cell biology and biomedical optics.
Collapse
Affiliation(s)
- Georgii Bogdanov
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Nataliya Makeeva
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Aleeza Farrukh
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Alon A Gorodetsky
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Chatterjee A, Pratakshya P, Kwansa AL, Kaimal N, Cannon AH, Sartori B, Marmiroli B, Orins H, Feng Z, Drake S, Couvrette J, Le L, Bernstorff S, Yingling YG, Gorodetsky AA. Squid Skin Cell-Inspired Refractive Index Mapping of Cells, Vesicles, and Nanostructures. ACS Biomater Sci Eng 2023; 9:978-990. [PMID: 36692450 DOI: 10.1021/acsbiomaterials.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fascination with the optical properties of naturally occurring systems has been driven in part by nature's ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index material─a protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques.
Collapse
Affiliation(s)
- Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Preeta Pratakshya
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Albert L Kwansa
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikhil Kaimal
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Andrew H Cannon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Helen Orins
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Zhijing Feng
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Drake
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Justin Couvrette
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - LeAnn Le
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | | | - Yaroslava G Yingling
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alon A Gorodetsky
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Song J, Li B, Zeng L, Ye Z, Wu W, Hu B. A Mini-Review on Reflectins, from Biochemical Properties to Bio-Inspired Applications. Int J Mol Sci 2022; 23:ijms232415679. [PMID: 36555320 PMCID: PMC9779258 DOI: 10.3390/ijms232415679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Some cephalopods (squids, octopuses, and cuttlefishes) produce dynamic structural colors, for camouflage or communication. The key to this remarkable capability is one group of specialized cells called iridocytes, which contain aligned membrane-enclosed platelets of high-reflective reflectins and work as intracellular Bragg reflectors. These reflectins have unusual amino acid compositions and sequential properties, which endows them with functional characteristics: an extremely high reflective index among natural proteins and the ability to answer various environmental stimuli. Based on their unique material composition and responsive self-organization properties, the material community has developed an impressive array of reflectin- or iridocyte-inspired optical systems with distinct tunable reflectance according to a series of internal and external factors. More recently, scientists have made creative attempts to engineer mammalian cells to explore the function potentials of reflectin proteins as well as their working mechanism in the cellular environment. Progress in wide scientific areas (biophysics, genomics, gene editing, etc.) brings in new opportunities to better understand reflectins and new approaches to fully utilize them. The work introduced the composition features, biochemical properties, the latest developments, future considerations of reflectins, and their inspiration applications to give newcomers a comprehensive understanding and mutually exchanged knowledge from different communities (e.g., biology and material).
Collapse
Affiliation(s)
- Junyi Song
- Correspondence: (J.S.); (B.H.); Tel.: +86-18969697729 (J.S.); +86-13308492461 (B.H.)
| | | | | | | | | | - Biru Hu
- Correspondence: (J.S.); (B.H.); Tel.: +86-18969697729 (J.S.); +86-13308492461 (B.H.)
| |
Collapse
|
12
|
Kong J, Li W, Zhao S, Zhang J, Yue T, Wang Y, Xia Y, Li Z. Color-Tunable Fluorescent Hierarchical Nanoassemblies with Concentration-Encoded Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201826. [PMID: 35670152 DOI: 10.1002/smll.202201826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Cephalopods possess a dynamic coloration behavior to change their iridescence due to the concentration-induced optical properties of chromatophores and hierarchical assembly of reflectin. However, cephalopods rarely have iridescence in the darkfield. It would be interesting to develop color-tunable fluorescent hierarchical nanoassemblies with concentration-encoded emission. Herein, to construct the bioavailable fluorophore with dynamic coloration properties, a histidine-rich peptide is designed, which can self-assemble into hierarchical nanoassemblies stabilized by hydrogen bonds and π-π stacking interactions. The peptidyl nanoassemblies emit fluorescent iridescence, encompassing the blue to orange region due to the assembly-induced emission. The fluorescence of histidine-rich peptides is color-tunable and reversible, which can be dynamically controlled in a concentration-encoded mode. Due to the coloration ability of histidine-rich peptides, fluorescent polychromatic human cells are developed, highlighting its potential role as a fluorescent candidate for future applications such as bioimaging, implantable light-emitting diodes, and photochromic camouflage.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Wenxin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Shixuan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
13
|
At the Intersection of Natural Structural Coloration and Bioengineering. Biomimetics (Basel) 2022; 7:biomimetics7020066. [PMID: 35645193 PMCID: PMC9149877 DOI: 10.3390/biomimetics7020066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Most of us get inspired by and interact with the world around us based on visual cues such as the colors and patterns that we see. In nature, coloration takes three primary forms: pigmentary coloration, structural coloration, and bioluminescence. Typically, pigmentary and structural coloration are used by animals and plants for their survival; however, few organisms are able to capture the nearly instantaneous and visually astounding display that cephalopods (e.g., octopi, squid, and cuttlefish) exhibit. Notably, the structural coloration of these cephalopods critically relies on a unique family of proteins known as reflectins. As a result, there is growing interest in characterizing the structure and function of such optically-active proteins (e.g., reflectins) and to leverage these materials across a broad range of disciplines, including bioengineering. In this review, I begin by briefly introducing pigmentary and structural coloration in animals and plants as well as highlighting the extraordinary appearance-changing capabilities of cephalopods. Next, I outline recent advances in the characterization and utilization of reflectins for photonic technologies and and discuss general strategies and limitations for the structural and optical characterization of proteins. Finally, I explore future directions of study for optically-active proteins and their potential applications. Altogether, this review aims to bring together an interdisciplinary group of researchers who can resolve the fundamental questions regarding the structure, function, and self-assembly of optically-active protein-based materials.
Collapse
|
14
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|