1
|
Xu M, Zhang Q, Shi H, Wu Z, Zhou W, Lin F, Kou Y, Tao Z. A repressive H3K36me2 reader mediates Polycomb silencing. Nat Commun 2024; 15:7287. [PMID: 39179589 PMCID: PMC11343894 DOI: 10.1038/s41467-024-51789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
In animals, evolutionarily conserved Polycomb repressive complex 2 (PRC2) catalyzes histone H3 lysine 27 trimethylation (H3K27me3) and PRC1 functions in recruitment and transcriptional repression. However, the mechanisms underlying H3K27me3-mediated stable transcriptional silencing are largely unknown, as PRC1 subunits are poorly characterized in fungi. Here, we report that in the filamentous fungus Magnaporthe oryzae, the N-terminal chromodomain and C-terminal MRG domain of Eaf3 play key roles in facultative heterochromatin formation and transcriptional silencing. Eaf3 physically interacts with Ash1, Eed, and Sin3, encoding an H3K36 methyltransferase, the core subunit of PRC2, and a histone deacetylation co-suppressor, respectively. Eaf3 co-localizes with a set of repressive Ash1-H3K36me2 and H3K27me3 loci and mediates their transcriptional silencing. Furthermore, Eaf3 acts as a histone reader for the repressive H3K36me2 and H3K27me3 marks. Eaf3-occupied regions are associated with increased nucleosome occupancy, contributing to transcriptional silencing in M. oryzae. Together, these findings reveal that Eaf3 is a repressive H3K36me2 reader and plays a vital role in Polycomb gene silencing and the formation of facultative heterochromatin in fungi.
Collapse
Affiliation(s)
- Mengting Xu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zhongling Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
| | - Zeng Tao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Paniagua N, Roberts CJ, Gonzalez LE, Monedero-Alonso D, Reinke V. The Upstream Sequence Transcription Complex dictates nucleosome positioning and promoter accessibility at piRNA genes in the C. elegans germ line. PLoS Genet 2024; 20:e1011345. [PMID: 38985845 PMCID: PMC11262695 DOI: 10.1371/journal.pgen.1011345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/22/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
The piRNA pathway is a conserved germline-specific small RNA pathway that ensures genomic integrity and continued fertility. In C. elegans and other nematodes, Type-I piRNAs are expressed from >10,000 independently transcribed genes clustered within two discrete domains of 1.5 and 3.5 MB on Chromosome IV. Clustering of piRNA genes contributes to their germline-specific expression, but the underlying mechanisms are unclear. We analyze isolated germ nuclei to demonstrate that the piRNA genomic domains are located in a heterochromatin-like environment. USTC (Upstream Sequence Transcription Complex) promotes strong association of nucleosomes throughout piRNA clusters, yet organizes the local nucleosome environment to direct the exposure of individual piRNA genes. Localization of USTC to the piRNA domains depends upon the ATPase chromatin remodeler ISW-1, which maintains high nucleosome density across piRNA clusters and ongoing production of piRNA precursors. Overall, this work provides insight into how chromatin states coordinate transcriptional regulation over large genomic domains, with implications for global genome organization.
Collapse
Affiliation(s)
- Nancy Paniagua
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - C. Jackson Roberts
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Lauren E. Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - David Monedero-Alonso
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven Connecticut, United States of America
| |
Collapse
|
3
|
Xu M, Sun Z, Shi H, Yue J, Xiong X, Wu Z, Kou Y, Tao Z. Two H3K36 methyltransferases differentially associate with transcriptional activity and enrichment of facultative heterochromatin in rice blast fungus. ABIOTECH 2024; 5:1-16. [PMID: 38576437 PMCID: PMC10987451 DOI: 10.1007/s42994-023-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/17/2023] [Indexed: 04/06/2024]
Abstract
Di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/3) is catalysed by histone methyltransferase Set2, which plays an essential role in transcriptional regulation. Although there is a single H3K36 methyltransferase in yeast and higher eukaryotes, two H3K36 methyltransferases, Ash1 and Set2, were present in many filamentous fungi. However, their roles in H3K36 methylation and transcriptional regulation remained unclear. Combined with methods of RNA-seq and ChIP-seq, we revealed that both Ash1 and Set2 are redundantly required for the full H3K36me2/3 activity in Magnaporthe oryzae, which causes the devastating worldwide rice blast disease. Ash1 and Set2 distinguish genomic H3K36me2/3-marked regions and are differentially associated with repressed and activated transcription, respectively. Furthermore, Ash1-catalysed H3K36me2 was co-localized with H3K27me3 at the chromatin, and Ash1 was required for the enrichment and transcriptional silencing of H3K27me3-occupied genes. With the different roles of Ash1 and Set2, in H3K36me2/3 enrichment and transcriptional regulation on the stress-responsive genes, they differentially respond to various stresses in M. oryzae. Overall, we reveal a novel mechanism by which two H3K36 methyltransferases catalyze H3K36me2/3 that differentially associate with transcriptional activities and contribute to enrichment of facultative heterochromatin in eukaryotes. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00127-3.
Collapse
Affiliation(s)
- Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ziyue Sun
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Jiangnan Yue
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhongling Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
4
|
Meng Y, Ni Y, Li Z, Jiang T, Sun T, Li Y, Gao X, Li H, Suo C, Li C, Yang S, Lan T, Liao G, Liu T, Wang P, Ding C. Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance in Cryptococcus neoformans. eLife 2024; 13:e85728. [PMID: 38251723 PMCID: PMC10834027 DOI: 10.7554/elife.85728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/21/2024] [Indexed: 01/23/2024] Open
Abstract
Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.
Collapse
Affiliation(s)
- Yang Meng
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Yue Ni
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Zhuoran Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianhang Jiang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianshu Sun
- Department of Scientific Research, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, The First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Chao Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tian Lan
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Tongbao Liu
- Medical Research Institute, Southwest UniversityChongqingChina
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New OrleansNew OrleansUnited States
| | - Chen Ding
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| |
Collapse
|
5
|
Möller M, Ridenour JB, Wright DF, Martin FA, Freitag M. H4K20me3 is important for Ash1-mediated H3K36me3 and transcriptional silencing in facultative heterochromatin in a fungal pathogen. PLoS Genet 2023; 19:e1010945. [PMID: 37747878 PMCID: PMC10553808 DOI: 10.1371/journal.pgen.1010945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/05/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Facultative heterochromatin controls development and differentiation in many eukaryotes. In metazoans, plants, and many filamentous fungi, facultative heterochromatin is characterized by transcriptional repression and enrichment with nucleosomes that are trimethylated at histone H3 lysine 27 (H3K27me3). While loss of H3K27me3 results in derepression of transcriptional gene silencing in many species, additional up- and downstream layers of regulation are necessary to mediate control of transcription in chromosome regions enriched with H3K27me3. Here, we investigated the effects of one histone mark on histone H4, namely H4K20me3, in the fungus Zymoseptoria tritici, a globally important pathogen of wheat. Deletion of kmt5, the gene encoding the sole methyltransferase responsible for H4K20 methylation, resulted in global derepression of transcription, especially in regions of facultative heterochromatin. Derepression in the absence of H4K20me3 not only affected known genes but also a large number of novel, previously undetected transcripts generated from regions of facultative heterochromatin on accessory chromosomes. Transcriptional activation in kmt5 deletion strains was accompanied by a complete loss of Ash1-mediated H3K36me3 and chromatin reorganization affecting H3K27me3 and H3K4me2 distribution in regions of facultative heterochromatin. Strains with H4K20L, M or Q mutations in the single histone H4 gene of Z. tritici recapitulated these chromatin changes, suggesting that H4K20me3 is important for Ash1-mediated H3K36me3. The ∆kmt5 mutants we obtained were more sensitive to genotoxic stressors than wild type and both, ∆kmt5 and ∆ash1, showed greatly increased rates of accessory chromosome loss. Taken together, our results provide insights into an unsuspected mechanism involved in the assembly and maintenance of facultative heterochromatin.
Collapse
Affiliation(s)
- Mareike Möller
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - John B. Ridenour
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Devin F. Wright
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Faith A. Martin
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
6
|
Wang B, Zhou X, Kettenbach AN, Mitchell HD, Markillie LM, Loros JJ, Dunlap JC. A crucial role for dynamic expression of components encoding the negative arm of the circadian clock. Nat Commun 2023; 14:3371. [PMID: 37291101 PMCID: PMC10250352 DOI: 10.1038/s41467-023-38817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| | - Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Hugh D Mitchell
- Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Wang B, Zhou X, Kettenbach AN, Mitchell HD, Markillie LM, Loros JJ, Dunlap JC. A crucial role for dynamic expression of components encoding the negative arm of the circadian clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538162. [PMID: 37162945 PMCID: PMC10168201 DOI: 10.1101/2023.04.24.538162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency ( frq ). FRQ interacts with FRH (FRQ-interacting helicase) and CK-1 forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8 , that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone hH2Az , and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify new auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.
Collapse
|
9
|
Heterochromatin and RNAi act independently to ensure genome stability in Mucorales human fungal pathogens. Proc Natl Acad Sci U S A 2023; 120:e2220475120. [PMID: 36745785 PMCID: PMC9963178 DOI: 10.1073/pnas.2220475120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chromatin modifications play a fundamental role in controlling transcription and genome stability and yet despite their importance, are poorly understood in early-diverging fungi. We present a comprehensive study of histone lysine and DNA methyltransferases across the Mucoromycota, emphasizing heterochromatin formation pathways that rely on the Clr4 complex involved in H3K9-methylation, the Polycomb-repressive complex 2 driving H3K27-methylation, or DNMT1-like methyltransferases that catalyze 5mC DNA methylation. Our analysis uncovered H3K9-methylated heterochromatin as the major chromatin modification repressing transcription in these fungi, which lack both Polycomb silencing and cytosine methylation. Although small RNAs generated by RNA interference (RNAi) pathways facilitate the formation of heterochromatin in many eukaryotic organisms, we show that RNAi is not required to maintain either genomic or centromeric heterochromatin in Mucor. H3K9-methylation and RNAi act independently to control centromeric regions, suggesting a functional subspecialization. Whereas the H3K9 methyltransferase Clr4 and heterochromatin formation are essential for cell viability, RNAi is dispensable for viability yet acts as the main epigenetic, regulatory force repressing transposition of centromeric GremLINE1 elements. Mutations inactivating canonical RNAi lead to rampant transposition and insertional inactivation of targets resulting in antimicrobial drug resistance. This fine-tuned, Rdrp2-dependent RNAi activity is critical for genome stability, restricting GremLINE1 retroelements to the centromeres where they occupy long heterochromatic islands. Taken together, our results suggest that RNAi and heterochromatin formation are independent genome defense and regulatory mechanisms in the Mucorales, contributing to a paradigm shift from the cotranscriptional gene silencing observed in fission yeasts to models in which heterochromatin and RNAi operate independently in early-diverging fungi.
Collapse
|
10
|
Liu ZW, Simmons CH, Zhong X. Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102261. [PMID: 35841650 PMCID: PMC10014033 DOI: 10.1016/j.pbi.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chromatin organization is important for many DNA-templated processes in eukaryotic cells such as replication and transcription. Recent studies have uncovered the capacity of epigenetic modifications, phase separation, and nuclear architecture and spatial positioning to regulate chromatin organization in both plants and animals. Here, we provide an overview of the recent progress made in understanding how chromatin is organized within the nucleus at both the local and global levels with respect to the regulation of transcriptional silencing in plants. To be concise while covering important mechanisms across a range of scales, we focus on how epigenetic modifications and chromatin remodelers alter local chromatin structure, how liquid-liquid phase separation physically separates broader chromatin domains into distinct droplets, and how nuclear positioning affects global chromatin organization.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carl H Simmons
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Lin C, Wu Z, Shi H, Yu J, Xu M, Lin F, Kou Y, Tao Z. The additional PRC2 subunit and Sin3 histone deacetylase complex are required for the normal distribution of H3K27me3 occupancy and transcriptional silencing in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2022; 236:576-589. [PMID: 35842786 DOI: 10.1111/nph.18383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Development in higher organisms requires proper gene silencing, partially achieved through trimethylation of lysine 27 on histone H3 (H3K27me3). However, how the normal distribution of this modification is established and maintained and how it affects gene expression remains unclear, especially in fungi. Polycomb repressive complex 2 (PRC2) catalyses H3K27me3 to assemble transcriptionally repressed facultative heterochromatin and is crucial in animals, plants, and fungi. Here, we report on the critical role of an additional PRC2 subunit in the normal distribution of H3K27me3 occupancy and the stable maintenance of gene repression in the rice fungal pathogen Magnaporthe oryzae. P55, identified as an additional PRC2 subunit, is physically associated with core subunits of PRC2 and is required for a complete level of H3K27me3 modification. Loss of P55 caused severe global defects in the normal distribution of H3K27me3 and transcriptional reprogramming on the H3K27me3-occupied genes. Furthermore, we found that the Sin3 histone deacetylase complex was required to sustain H3K27me3 occupancy and stably maintain gene repression by directly interacting with P55. Our results revealed a novel mechanism by which P55 and Sin3 participate in the normal distribution of facultative heterochromatic modifications and the stable maintenance of gene repression in eukaryotes.
Collapse
Affiliation(s)
- Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Zhongling Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310021, China
| | - Jinwei Yu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fucheng Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310021, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
13
|
Wiles ET, Mumford CC, McNaught KJ, Tanizawa H, Selker EU. The ACF chromatin-remodeling complex is essential for Polycomb repression. eLife 2022; 11:e77595. [PMID: 35257662 PMCID: PMC9038196 DOI: 10.7554/elife.77595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing and maintaining appropriate gene repression is critical for the health and development of multicellular organisms. Histone H3 lysine 27 (H3K27) methylation is a chromatin modification associated with repressed facultative heterochromatin, but the mechanism of this repression remains unclear. We used a forward genetic approach to identify genes involved in transcriptional silencing of H3K27-methylated chromatin in the filamentous fungus Neurospora crassa. We found that the N. crassa homologs of ISWI (NCU03875) and ACF1 (NCU00164) are required for repression of a subset of H3K27-methylated genes and that they form an ACF chromatin-remodeling complex. This ACF complex interacts with chromatin throughout the genome, yet association with facultative heterochromatin is specifically promoted by the H3K27 methyltransferase, SET-7. H3K27-methylated genes that are upregulated when iswi or acf1 are deleted show a downstream shift of the +1 nucleosome, suggesting that proper nucleosome positioning is critical for repression of facultative heterochromatin. Our findings support a direct role of the ACF complex in Polycomb repression.
Collapse
Affiliation(s)
- Elizabeth T Wiles
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Colleen C Mumford
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Kevin J McNaught
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Eric U Selker
- Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
14
|
|
15
|
IMITATION SWITCH is required for normal chromatin structure and gene repression in PRC2 target domains. Proc Natl Acad Sci U S A 2021; 118:2010003118. [PMID: 33468665 DOI: 10.1073/pnas.2010003118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycomb Group (PcG) proteins are part of an epigenetic cell memory system that plays essential roles in multicellular development, stem cell biology, X chromosome inactivation, and cancer. In animals, plants, and many fungi, Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to assemble transcriptionally repressed facultative heterochromatin. PRC2 is structurally and functionally conserved in the model fungus Neurospora crassa, and recent work in this organism has generated insights into PRC2 control and function. To identify components of the facultative heterochromatin pathway, we performed a targeted screen of Neurospora deletion strains lacking individual ATP-dependent chromatin remodeling enzymes. We found the Neurospora homolog of IMITATION SWITCH (ISW) is critical for normal transcriptional repression, nucleosome organization, and establishment of typical histone methylation patterns in facultative heterochromatin domains. We also found that stable interaction between PRC2 and chromatin depends on ISW. A functional ISW ATPase domain is required for gene repression and normal H3K27 methylation. ISW homologs interact with accessory proteins to form multiple complexes with distinct functions. Using proteomics and molecular approaches, we identified three distinct Neurospora ISW-containing complexes. A triple mutant lacking three ISW accessory factors and disrupting multiple ISW complexes led to widespread up-regulation of PRC2 target genes and altered H3K27 methylation patterns, similar to an ISW-deficient strain. Taken together, our data show that ISW is a key component of the facultative heterochromatin pathway in Neurospora, and that distinct ISW complexes perform an apparently overlapping role to regulate chromatin structure and gene repression at PRC2 target domains.
Collapse
|
16
|
Carlier F, Li M, Maroc L, Debuchy R, Souaid C, Noordermeer D, Grognet P, Malagnac F. Loss of EZH2-like or SU(VAR)3-9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics Chromatin 2021; 14:22. [PMID: 33962663 PMCID: PMC8105982 DOI: 10.1186/s13072-021-00395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. RESULTS We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3-9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. CONCLUSIONS Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.
Collapse
Affiliation(s)
- F Carlier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris, France
| | - M Li
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - L Maroc
- Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Saclay-CNRS-AgroParisTech, Batiment 400, UFR Des Sciences, 91405, Orsay CEDEX, France
| | - R Debuchy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - C Souaid
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, Aix-Marseille University, 13288, Marseille, France
| | - D Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - P Grognet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - F Malagnac
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei. mBio 2021; 13:e0345621. [PMID: 35130719 PMCID: PMC8822348 DOI: 10.1128/mbio.03456-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers isolated from nature. T. reesei also produces a typical yellow pigment identified as sorbicillinoids during cultivation. Here, we identified an evolutionarily conserved histone remodeling factor, ISW1, in T. reesei that simultaneously participates in regulating cellulase and the yellow pigment biosynthesis. Trisw1 deletion almost abolished vegetable growth, asexual spore formation, and cellulase gene expression. However, its absence significantly enhanced the production of the yellow pigment. The observed dual regulatory role of TrISW1 was dependent on its ATPase activity. We demonstrated that Trisw1 disruption elevated the transcription of ypr1 coding for the transcriptional activator of sor genes encoding the polyketide synthases catalyzing the biosynthesis of sorbicillinoids but compromised that of xyr1 encoding the key transcriptional activator of cellulase genes. Discrete T. reesei homologous ISW1 accessory factors were also found to exert differential effects on the expression of these two types of genes. Further analyses showed that TrISW1 was recruited to cellulase gene promoters, and its absence interfered with loss of histone H4 at the cbh1 and eg1 promoters upon cellulose induction. To the contrary, Trisw1 deletion facilitated loss of H4 at the sor locus. These data indicate that TrISW1 represents an important chromatin remodeler with a dual role in coordinating the cellulolytic response and biosynthesis of the major secondary metabolite in T. reesei. IMPORTANCE Microorganisms, including Trichoderma reesei, constantly face the challenge to outcompete other species to ensure efficient colonization in their natural habitat. They achieve this usually by adopting two alternative strategies by either maintaining fast growth on limited nutrient resources or producing a versatile array of secondary metabolites to fight against competitors. These two strategies, however, have to be subtly controlled to balance the assignment of and thus make the best use of cellular resources. Here, we identified a chromatin remodeling factor, TrISW1, with a dual role in coordinating the cellulolytic response and biosynthesis of the major secondary metabolite in T. reesei. The data also provide a novel insight into how T. reesei takes advantage of a chromatin remodeler to exquisitely balance two different adaptive strategies to ensure an efficient allocation of cellular resources to achieve efficient colonization in a specific environment.
Collapse
|