1
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
de Jong SP, Conlan A, Han AX, Russell CA. Commuting-driven competition between transmission chains shapes seasonal influenza virus epidemics in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.09.24311720. [PMID: 39148829 PMCID: PMC11326338 DOI: 10.1101/2024.08.09.24311720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite intensive study, much remains unknown about the dynamics of seasonal influenza virus epidemic establishment and spread in the United States (US) each season. By reconstructing transmission lineages from seasonal influenza virus genomes collected in the US from 2014 to 2023, we show that most epidemics consisted of multiple distinct transmission lineages. Spread of these lineages exhibited strong spatiotemporal hierarchies and lineage size was correlated with timing of lineage establishment in the US. Mechanistic epidemic simulations suggest that mobility-driven competition between lineages determined the extent of individual lineages' geographical spread. Based on phylogeographic analyses and epidemic simulations, lineage-specific movement patterns were dominated by human commuting behavior. These results suggest that given the locations of early-season epidemic sparks, the topology of inter-state human mobility yields repeatable patterns of which influenza viruses will circulate where, but the importance of short-term processes limits predictability of regional and national epidemics.
Collapse
Affiliation(s)
- Simon P.J. de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam; Amsterdam, The Netherlands
| | - Andrew Conlan
- Department of Veterinary Medicine, University of Cambridge; Cambridge, United Kingdom
| | - Alvin X. Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam; Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam; Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chen D, Zhang T, Chen S, Ru X, Shao Q, Ye Q, Cheng D. The effect of nonpharmaceutical interventions on influenza virus transmission. Front Public Health 2024; 12:1336077. [PMID: 38389947 PMCID: PMC10881707 DOI: 10.3389/fpubh.2024.1336077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Background The use of nonpharmaceutical interventions (NPIs) during severe acute respiratory syndrome 2019 (COVID-19) outbreaks may influence the spread of influenza viruses. This study aimed to evaluate the impact of NPIs against SARS-CoV-2 on the epidemiological features of the influenza season in China. Methods We conducted a retrospective observational study analyzing influenza monitoring data obtained from the China National Influenza Center between 2011 and 2023. We compared the changes in influenza-positive patients in the pre-COVID-19 epidemic, during the COVID-19 epidemic, and post-COVID-19 epidemic phases to evaluate the effect of NPIs on influenza virus transmission. Results NPIs targeting COVID-19 significantly suppressed influenza activity in China from 2019 to 2022. In the seventh week after the implementation of the NPIs, the number of influenza-positive patients decreased by 97.46% in southern regions of China and 90.31% in northern regions of China. However, the lifting of these policies in December 2022 led to an unprecedented surge in influenza-positive cases in autumn and winter from 2022 to 2023. The percentage of positive influenza cases increased by 206.41% (p < 0.001), with high positivity rates reported in both the northern and southern regions of China. Conclusion Our findings suggest that NPIs against SARS-CoV-2 are effective at controlling influenza epidemics but may compromise individuals' immunity to the virus.
Collapse
Affiliation(s)
- Danlei Chen
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ting Zhang
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Simiao Chen
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xuanwen Ru
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Qingyi Shao
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Dongqing Cheng
- School of Medical Technology and Informatlon Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Wang X, Kim KW, Walker G, Stelzer‐Braid S, Scotch M, Rawlinson WD. Genome characterization of influenza A and B viruses in New South Wales, Australia, in 2019: A retrospective study using high-throughput whole genome sequencing. Influenza Other Respir Viruses 2024; 18:e13252. [PMID: 38288510 PMCID: PMC10824601 DOI: 10.1111/irv.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND During the 2019 severe influenza season, New South Wales (NSW) experienced the highest number of cases in Australia. This study retrospectively investigated the genetic characteristics of influenza viruses circulating in NSW in 2019 and identified genetic markers related to antiviral resistance and potential virulence. METHODS The complete genomes of influenza A and B viruses were amplified using reverse transcription-polymerase chain reaction (PCR) and sequenced with an Illumina MiSeq platform. RESULTS When comparing the sequencing data with the vaccine strains and reference sequences, the phylogenetic analysis revealed that most NSW A/H3N2 viruses (n = 68; 94%) belonged to 3C.2a1b and a minority (n = 4; 6%) belonged to 3C.3a. These viruses all diverged from the vaccine strain A/Switzerland/8060/2017. All A/H1N1pdm09 viruses (n = 20) showed genetic dissimilarity from vaccine strain A/Michigan/45/2015, with subclades 6B.1A.5 and 6B.1A.2 identified. All B/Victoria-lineage viruses (n = 21) aligned with clade V1A.3, presenting triple amino acid deletions at positions 162-164 in the hemagglutinin protein, significantly diverging from the vaccine strain B/Colorado/06/2017. Multiple amino acid substitutions were also found in the internal proteins of influenza viruses, some of which have been previously reported in hospitalized influenza patients in Thailand. Notably, the oseltamivir-resistant marker H275Y was present in one immunocompromised patient infected with A/H1N1pdm09 and the resistance-related mutation I222V was detected in another A/H3N2-infected patient. CONCLUSIONS Considering antigenic drift and the constant evolution of circulating A and B strains, we believe continuous monitoring of influenza viruses in NSW via the high-throughput sequencing approach provides timely and pivotal information for both public health surveillance and clinical treatment.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biomedical Sciences, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health PathologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Ki Wook Kim
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health PathologyPrince of Wales HospitalSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gregory Walker
- School of Biomedical Sciences, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health PathologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Sacha Stelzer‐Braid
- School of Biomedical Sciences, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health PathologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign InstituteArizona State UniversityPhoenixArizonaUSA
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
- Kirby InstituteUniversity of New South WalesSydneyNew South WalesAustralia
| | - William D. Rawlinson
- School of Biomedical Sciences, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health PathologyPrince of Wales HospitalSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Du Z, Shao Z, Zhang X, Chen R, Chen T, Bai Y, Wang L, Lau EHY, Cowling BJ. Nowcasting and Forecasting Seasonal Influenza Epidemics - China, 2022-2023. China CDC Wkly 2023; 5:1100-1106. [PMID: 38125915 PMCID: PMC10728554 DOI: 10.46234/ccdcw2023.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Background Seasonal influenza resurged in China in February 2023, causing a large number of hospitalizations. While influenza epidemics occurred across China during the coronavirus disease 2019 (COVID-19) pandemic, the relaxation of COVID-19 containment measures in December 2022 may have contributed to the spread of acute respiratory infections in winter 2022/2023. Methods Using a mathematical model incorporating influenza activity as measured by influenza-like illness (ILI) data for northern and southern regions of China, we reconstructed the seasonal influenza incidence from October 2015 to September 2019 before the COVID-19 pandemic. Using this trained model, we predicted influenza activities in northern and southern China from March to September 2023. Results We estimated the effective reproduction number R e as 1.08 [95% confidence interval ( CI): 0.51, 1.65] in northern China and 1.10 (95% CI: 0.55, 1.67) in southern China at the start of the 2022-2023 influenza season. We estimated the infection attack rate of this influenza wave as 18.51% (95% CI: 0.00%, 37.78%) in northern China and 28.30% (95% CI: 14.77%, 41.82%) in southern China. Conclusions The 2023 spring wave of seasonal influenza in China spread until July 2023 and infected a substantial number of people.
Collapse
Affiliation(s)
- Zhanwei Du
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zengyang Shao
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Xiao Zhang
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Ruohan Chen
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, China
| | - Yuan Bai
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Eric H. Y. Lau
- Institute for Health Transformation & School of Health & Social Development, Deakin University, Melbourne, Australia
| | - Benjamin J. Cowling
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
8
|
Gokhale DV, Brett TS, He B, King AA, Rohani P. Disentangling the causes of mumps reemergence in the United States. Proc Natl Acad Sci U S A 2023; 120:e2207595120. [PMID: 36623178 PMCID: PMC9934068 DOI: 10.1073/pnas.2207595120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/19/2022] [Indexed: 01/11/2023] Open
Abstract
Over the past two decades, multiple countries with high vaccine coverage have experienced resurgent outbreaks of mumps. Worryingly, in these countries, a high proportion of cases have been among those who have completed the recommended vaccination schedule, raising alarm about the effectiveness of existing vaccines. Two putative mechanisms of vaccine failure have been proposed as driving observed trends: 1) gradual waning of vaccine-derived immunity (necessitating additional booster doses) and 2) the introduction of novel viral genotypes capable of evading vaccinal immunity. Focusing on the United States, we conduct statistical likelihood-based hypothesis testing using a mechanistic transmission model on age-structured epidemiological, demographic, and vaccine uptake time series data. We find that the data are most consistent with the waning hypothesis and estimate that 32.8% (32%, 33.5%) of individuals lose vaccine-derived immunity by age 18 y. Furthermore, we show using our transmission model how waning vaccine immunity reproduces qualitative and quantitatively consistent features of epidemiological data, namely 1) the shift in mumps incidence toward older individuals, 2) the recent recurrence of mumps outbreaks, and 3) the high proportion of mumps cases among previously vaccinated individuals.
Collapse
Affiliation(s)
- Deven V. Gokhale
- Odum School of Ecology, University of Georgia, Athens, GA30602
- Center of Ecology of Infectious Diseases, Athens, GA30602
- Center for Influenza Disease & Emergence Research, Athens, GA30602
| | - Tobias S. Brett
- Odum School of Ecology, University of Georgia, Athens, GA30602
- Center of Ecology of Infectious Diseases, Athens, GA30602
- Center for Influenza Disease & Emergence Research, Athens, GA30602
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Aaron A. King
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI48109
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA30602
- Center of Ecology of Infectious Diseases, Athens, GA30602
- Center for Influenza Disease & Emergence Research, Athens, GA30602
| |
Collapse
|
9
|
Kang HJ, Chu KB, Yoon KW, Eom GD, Mao J, Quan FS. Cross-Protection Induced by Virus-like Particles Derived from the Influenza B Virus. Biomedicines 2022; 10:1618. [PMID: 35884922 PMCID: PMC9313027 DOI: 10.3390/biomedicines10071618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 12/16/2022] Open
Abstract
The mismatch between the circulating influenza B virus (IBV) and the vaccine strain contributes to the rapid emergence of IBV infection cases throughout the globe, which necessitates the development of effective vaccines conferring broad protection. Here, we generated influenza B virus-like particle (VLP) vaccines expressing hemagglutinin, neuraminidase, or both antigens derived from the influenza B virus (B/Washington/02/2019 (B/Victoria lineage)-like virus, B/Phuket/3073/2013 (B/Yamagata lineage)-like virus. We found that irrespective of the derived antigen lineage, immunizing mice with the IBV VLPs significantly reduced lung viral loads, minimized bodyweight loss, and ensured 100% survival upon Victoria lineage virus B/Colorado/06/2017 challenge infection. These results were closely correlated with the vaccine-induced antibody responses and HI titer in sera, IgG, IgA antibody responses, CD4+ and CD8+ T cell responses, germinal center B cell responses, and inflammatory cytokine responses in the lungs. We conclude that hemagglutinin, neuraminidase, or both antigen-expressing VLPs derived from these influenza B viruses that were circulating during the 2020/21 season provide cross-protections against mismatched Victoria lineage virus (B/Colorado/06/2017) challenge infections.
Collapse
Affiliation(s)
- Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.-J.K.); (K.-W.Y.); (G.-D.E.); (J.M.)
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
10
|
Pekarek MJ, Petro-Turnquist EM, Rubrum A, Webby RJ, Weaver EA. Expanding Mouse-Adapted Yamagata-like Influenza B Viruses in Eggs Enhances In Vivo Lethality in BALB/c Mice. Viruses 2022; 14:v14061299. [PMID: 35746770 PMCID: PMC9229684 DOI: 10.3390/v14061299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023] Open
Abstract
Despite the yearly global impact of influenza B viruses (IBVs), limited host range has been a hurdle to developing a readily accessible small animal disease model for vaccine studies. Mouse-adapting IBV can produce highly pathogenic viruses through serial lung passaging in mice. Previous studies have highlighted amino acid changes throughout the viral genome correlating with increased pathogenicity, but no consensus mutations have been determined. We aimed to show that growth system can play a role in mouse-adapted IBV lethality. Two Yamagata-lineage IBVs were serially passaged 10 times in mouse lungs before expansion in embryonated eggs or Madin-Darby canine kidney cells (London line) for use in challenge studies. We observed that virus grown in embryonated eggs was significantly more lethal in mice than the same virus grown in cell culture. Ten additional serial lung passages of one strain again showed virus grown in eggs was more lethal than virus grown in cells. Additionally, no mutations in the surface glycoprotein amino acid sequences correlated to differences in lethality. Our results suggest growth system can influence lethality of mouse-adapted IBVs after serial lung passaging. Further research can highlight improved mechanisms for developing animal disease models for IBV vaccine research.
Collapse
Affiliation(s)
- Matthew J. Pekarek
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
| | - Erika M. Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.J.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.J.W.)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
- Correspondence:
| |
Collapse
|
11
|
Zipfel CM, Colizza V, Bansal S. The missing season: The impacts of the COVID-19 pandemic on influenza. Vaccine 2021; 39:3645-3648. [PMID: 34078554 PMCID: PMC8376231 DOI: 10.1016/j.vaccine.2021.05.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Throughout the COVID-19 pandemic, many have worried that the additional burden of seasonal influenza would create a devastating scenario, resulting in overwhelmed healthcare capacities and further loss of life. However, many were pleasantly surprised: the 2020 Southern Hemisphere and 2020-2021 Northern Hemisphere influenza seasons were entirely suppressed. The potential causes and impacts of this drastic public health shift are highly uncertain, but provide lessons about future control of respiratory diseases, especially for the upcoming influenza season.
Collapse
Affiliation(s)
- Casey M Zipfel
- Department of Biology, Georgetown University, Washington DC, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Pierre Louis Institute of Epidemiology and Public Health, Paris, France
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington DC, USA.
| |
Collapse
|
12
|
Anomalous influenza seasonality in the United States and the emergence of novel influenza B viruses. Proc Natl Acad Sci U S A 2021; 118:2012327118. [PMID: 33495348 DOI: 10.1073/pnas.2012327118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2019/2020 influenza season in the United States began earlier than any season since the 2009 H1N1 pandemic, with an increase in influenza-like illnesses observed as early as August. Also noteworthy was the numerical domination of influenza B cases early in this influenza season, in contrast to their typically later peak in the past. Here, we dissect the 2019/2020 influenza season not only with regard to its unusually early activity, but also with regard to the relative dynamics of type A and type B cases. We propose that the recent expansion of a novel influenza B/Victoria clade may be associated with this shift in the composition and kinetics of the influenza season in the United States. We use epidemiological transmission models to explore whether changes in the effective reproduction number or short-term cross-immunity between these viruses can explain the dynamics of influenza A and B seasonality. We find support for an increase in the effective reproduction number of influenza B, rather than support for cross-type immunity-driven dynamics. Our findings have clear implications for optimal vaccination strategies.
Collapse
|