1
|
Li S, Jin M. Ablation of Fatty Acid Transport Protein-4 Enhances Cone Survival, M-cone Vision, and Synthesis of Cone-Tropic 9- cis-Retinal in rd12 Mouse Model of Leber Congenital Amaurosis. J Neurosci 2024; 44:e1994232024. [PMID: 38811164 PMCID: PMC11223470 DOI: 10.1523/jneurosci.1994-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.
Collapse
Affiliation(s)
- Songhua Li
- Neuroscience Center, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
| | - Minghao Jin
- Neuroscience Center, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
- Department of Ophthalmology, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
2
|
Lu C, Li S, Jin M. Rapamycin Inhibits Light-Induced Necrosome Activation Occurring in Wild-Type, but not RPE65-Null, Mouse Retina. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 36534385 PMCID: PMC9769341 DOI: 10.1167/iovs.63.13.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Both photodamage and aberrant visual cycle contribute to disease progress of many retinal degenerative disorders, whereas the signaling pathways causing photoreceptor death remain unclear. Here we investigated the effects of intense photo-stress on (1) necrosome activation in wild-type and RPE65-null mice, (2) interaction of p62/Sequestosome-1 with the necrosome proteins, and (3) the effects of rapamycin on photodamage-induced necrosome activation and retinal degeneration in wild-type mice. Methods Dark-adapted rd12 mice and 129S2/Sv mice with or without rapamycin treatment were exposed to 15,000 lux light for different times. Expression levels and subcellular localization of proteins were determined through immunoblot and immunohistochemical analyses. Cone sheaths were stained with peanut agglutinin. Correlation between photoreceptor degeneration and receptor-interacting protein kinase-1 (RIPK1) expression was assessed with Spearman's correlation analysis. Protein-protein interaction was analyzed by immunoprecipitation. Results Intense light caused rod and cone degeneration accompanied by a significant increase in RIPK1-RIPK3 expressions, mixed lineage kinase domain-like protein phosphorylation, damage-associated molecular patterns protein release, and inflammatory responses in wild-type mouse retina. The same intense light did not induce the necrosome activation in rd12 retina, but it did in rd12 mice that received 9-cis-retinal supply. RIPK1 expression levels are positively correlated with the degrees of rod and cone degeneration. Photodamage upregulated expression and interaction of the p62 autophagosome cargo protein with the necrosome proteins, whereas rapamycin treatment attenuated the light-induced necrosome activation and photoreceptor degeneration. Conclusions Necrosome activation contributed to photodamage-induced rod and cone degeneration. The visual cycle and autophagy are the important therapeutic targets to alleviate light-induced retinal necroptosis.
Collapse
Affiliation(s)
- Chunfeng Lu
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| | - Songhua Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| | - Minghao Jin
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States,Department of Ophthalmology, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
Mancuso L, Cavuoti-Cabanillas S, Liloia D, Manuello J, Buzi G, Cauda F, Costa T. Tasks activating the default mode network map multiple functional systems. Brain Struct Funct 2022; 227:1711-1734. [PMID: 35179638 PMCID: PMC9098625 DOI: 10.1007/s00429-022-02467-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Recent developments in network neuroscience suggest reconsidering what we thought we knew about the default mode network (DMN). Although this network has always been seen as unitary and associated with the resting state, a new deconstructive line of research is pointing out that the DMN could be divided into multiple subsystems supporting different functions. By now, it is well known that the DMN is not only deactivated by tasks, but also involved in affective, mnestic, and social paradigms, among others. Nonetheless, it is starting to become clear that the array of activities in which it is involved, might also be extended to more extrinsic functions. The present meta-analytic study is meant to push this boundary a bit further. The BrainMap database was searched for all experimental paradigms activating the DMN, and their activation likelihood estimation maps were then computed. An additional map of task-induced deactivations was also created. A multidimensional scaling indicated that such maps could be arranged along an anatomo-psychological gradient, which goes from midline core activations, associated with the most internal functions, to that of lateral cortices, involved in more external tasks. Further multivariate investigations suggested that such extrinsic mode is especially related to reward, semantic, and emotional functions. However, an important finding was that the various activation maps were often different from the canonical representation of the resting-state DMN, sometimes overlapping with it only in some peripheral nodes, and including external regions such as the insula. Altogether, our findings suggest that the intrinsic-extrinsic opposition may be better understood in the form of a continuous scale, rather than a dichotomy.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | | | - Donato Liloia
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Giulia Buzi
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Franco Cauda
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|