1
|
Liu L, Yu X, Huang Y, Liu C, Xie X, Wu Z, Lin J, Shu B. Exposure to Sublethal Concentrations of Dinotefuran Induces Apoptosis in the Gut of Diaphorina citri Adults via Activating the Mitochondrial Apoptotic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19342-19352. [PMID: 39178008 DOI: 10.1021/acs.jafc.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Diaphorina citri is a serious citrus pest. Dinotefuran is highly insecticidal against D. citri. To analyze the sublethal effects of dinotefuran on D. citri adults, an indoor toxicity test was performed, which revealed that the lethal concentration 50 (LC50) values were 4.23 and 0.50 μg/mL for 24 and 48 h treatments, respectively. RNA-Seq led to the identification of 71 and 231 differentially expressed genes (DEGs) after dinotefuran treatments with LC20 and LC50 doses, respectively. Many of the DEGs are significantly enriched in the apoptosis pathway. Dinotefuran-induced apoptosis in the gut cells was confirmed through independent assays of 4',6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP nick end labeling (TUNEL) staining. Increased levels of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential were observed. Four caspase genes were identified, and dinotefuran treatments resulted in increased mRNA levels of DcCasp1 and DcCasp3a. These findings shed light on the sublethal effects of dinotefuran on D. citri.
Collapse
Affiliation(s)
- Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xuanyue Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Cuiting Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyi Xie
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Argandona JA, Kim D, Hansen AK. Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis. Sci Rep 2023; 13:5341. [PMID: 37005434 PMCID: PMC10067822 DOI: 10.1038/s41598-023-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Most plant-sap feeding insects have obligate relationships with maternally transmitted bacteria. Aphids require their nutritional endosymbiont, Buchnera aphidicola, for the production of essential amino acids. Such endosymbionts are harbored inside of specialized insect cells called bacteriocytes. Here, we use comparative transcriptomics of bacteriocytes between two recently diverged aphid species, Myzus persicae and Acyrthosiphon pisum, to identify key genes that are important for the maintenance of their nutritional mutualism. The majority of genes with conserved expression profiles in M. persicae and A. pisum are for orthologs previously identified in A. pisum to be important for the symbiosis. However, asparaginase which produces aspartate from asparagine was significantly up-regulated only in A. pisum bacteriocytes, potentially because Buchnera of M. persicae encodes its own asparaginase enzyme unlike Buchnera of A. pisum resulting in Buchnera of A. pisum to be dependent on its aphid host for aspartate. One-to-one orthologs that explained the most amount of variation for bacteriocyte specific mRNA expression for both species includes a collaborative gene for methionine biosynthesis, multiple transporters, a horizontally transmitted gene, and secreted proteins. Finally, we highlight species-specific gene clusters which may contribute to host adaptations and/or accommodations in gene regulation to changes in the symbiont or the symbiosis.
Collapse
Affiliation(s)
- Jacob A Argandona
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Dohyup Kim
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Loth K, Parisot N, Paquet F, Terrasson H, Sivignon C, Rahioui I, Ribeiro Lopes M, Gaget K, Duport G, Delmas AF, Aucagne V, Heddi A, Calevro F, da Silva P. Aphid BCR4 Structure and Activity Uncover a New Defensin Peptide Superfamily. Int J Mol Sci 2022; 23:ijms232012480. [PMID: 36293341 PMCID: PMC9604261 DOI: 10.3390/ijms232012480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
- UFR Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Hugo Terrasson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Isabelle Rahioui
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Karen Gaget
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Gabrielle Duport
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Pedro da Silva
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Correspondence:
| |
Collapse
|
4
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Huygens C, Ribeiro Lopes M, Gaget K, Duport G, Peignier S, De Groef S, Parisot N, Calevro F, Callaerts P. Evolutionary diversification of insulin-related peptides (IRPs) in aphids and spatiotemporal distribution in Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103670. [PMID: 34666188 DOI: 10.1016/j.ibmb.2021.103670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Members of the insulin superfamily activate the evolutionarily highly conserved insulin/insulin-like growth factor signaling pathway, involved in regulation of growth, energy homeostasis, and longevity. In the current study we focus on aphids to gain more insight into the evolution of the IRPs and how they may contribute to regulation of the insulin-signaling pathway. Using the latest annotation of the pea aphid (Acyrthosiphon pisum) genome, and combining sequence alignments and phylogenetic analyses, we identified seven putative IRP encoding-genes, with IRP1-IRP4 resembling the classical insulin and insulin-like protein structures, and IRP5 and IRP6 bearing insulin-like growth factor (IGF) features. We also identified IRP11 as a new and structurally divergent IRP present in at least eight aphid genomes. Globally the ten aphid genomes analyzed in this work contain four to 15 IRPs, while only three IRPs were found in the genome of the grape phylloxera, a hemipteran insect representing an earlier evolutionary branch of the aphid group. Expression analyses revealed spatial and temporal variation in the expression patterns of the different A. pisum IRPs. IRP1 and IRP4 are expressed throughout all developmental stages and morphs in neuroendocrine cells of the brain, while IRP5 and IRP6 are expressed in the fat body. IRP2 is expressed in specific cells of the gut in aphids in non-crowded conditions and in the head of aphids under crowded conditions, IRP3 in salivary glands, and both IRP2 and IRP3 in the male morph. IRP11 expression is enriched in the carcass. This complex spatiotemporal expression pattern suggests functional diversification of the IRPs.
Collapse
Affiliation(s)
- C Huygens
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium; Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - M Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - K Gaget
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - G Duport
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S Peignier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S De Groef
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium
| | - N Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - F Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Deep Conservation of Hid-Like RHG Gene Family Homologs in Winged Insects Revealed by "Taxon Hopping" BLAST. INSECTS 2021; 12:insects12110957. [PMID: 34821758 PMCID: PMC8620624 DOI: 10.3390/insects12110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Together with sickle (skl), the Drosophila paralogs reaper (rpr), head involution defective (hid), and grim (RHG) control a critical switch in the induction of programmed cell death. RHG homologs have been identified in other dipteran and lepidopteran species but not beyond. Revisiting this issue with a "taxon hopping" BLAST search strategy in current genome and transcriptome resources, I detected high confidence RHG homologs in Coleoptera, Hymenoptera, Hemiptera, and Dictyoptera. Analyses of gene structure and protein sequence conservation revealed aconserved splicing pattern and highly conserved amino acid residues at both the N- and C-terminal ends that identify hid as the most ancestrally organized RHG gene family member in Drosophila. hid-like RHG homologs were also detected in mosquitoes, redefining their michelob_x (mx) genes as an expansion of derived RHG homologs. Only singleton homologs were detected in the large majority of other insect clades. Lepidopteran RHG homologs, however, stand out by producing an evolutionarily-derived splice isoform, identified in previous work, in addition to the newly detected hid-like isoform. Exceptional sequence diversification of select RHG homologs at the family- and genus-level explain their previous elusiveness in important insect genome model species like the red flour beetle Tribolium castaneum and the pea aphid Acyrthosiphon pisum. Combined, these findings expand the minimal age of the RHG gene family by about 100 million years and open new avenues for molecular cell death studies in insects.
Collapse
|