1
|
Harville PA, Moss OC, Rana A, Snowden EA, Johnson MA. Demonstration of Capture, Cooling, Tagging, and Spectroscopic Characterization of UV Photoproduct Ions in a Cryogenic Ion Trap: Application to 266 nm Photofragment Ions from Rhodamine 6G. J Phys Chem A 2024; 128:7714-7719. [PMID: 39194345 DOI: 10.1021/acs.jpca.4c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We demonstrate a method to determine the structures of the primary photodissociation products from a cryogenically cooled parent ion. In this approach, a target ion is cooled by a pulse of buffer gas and tagged in a 20 K Paul trap. The cold ion is then photodissociated by pulsed (∼5 ns) UV laser excitation, and the ionic products are trapped, cooled, and tagged by introduction of a second buffer gas pulse in the same trap. The tagged fragments are then ejected into a triple focusing, UV/vis/IR time-of-flight photofragmentation mass spectrometer which yields vibrational and electronic spectra of the mass-selected photofragments. These methods are demonstrated by application to the 266 nm photodissociation of the Rhodamine 6G cation to yield the R575 fragment ion based on loss of ethene as well as to a weaker secondary fragment arising from loss of m/z 43.
Collapse
Affiliation(s)
- Payten A Harville
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Olivia C Moss
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abhijit Rana
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elizabeth A Snowden
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Ozeki M, Orito M, Ishikawa H. Observation of the Infrared-Induced Structural Change in the Microscopic Hydrogen Bond Network of Phenol-Methanol Cluster Cations in a Cold-Ion Trap. J Phys Chem A 2024; 128:5873-5882. [PMID: 38996183 DOI: 10.1021/acs.jpca.4c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
To gain insight into microscopic hydrogen bond networks, we measured ultraviolet photodissociation (UVPD) spectra of the phenol-methanol 1:3 cluster cation, [PhOH(MeOH)3]+ trapped in a variable temperature ion trap. At low temperatures, an isomer with a ring-type hydrogen bond structure dominates, whereas at higher temperatures the chain-type isomers become dominant due to the flexibility of their hydrogen bond structures. We also found a clear temperature dependence of the spectral features, such as band position and width. In addition to the above measurement, we observed the infrared (IR) induced isomerization of [PhOH(MeOH)3]+ to study the dynamical aspects of hydrogen bond networks. We succeeded in observing IR-induced isomerization from the ring to chain forms of [PhOH(MeOH)3]+ at low temperature. The isomerization was clearly identified as a change in the UVPD spectra. The time evolution of the UVPD spectra after IR excitation indicated that the IR-induced isomerization occurs within a nanosecond. The chain-type isomers produced by the IR-induced isomerization are then converted back to the ring-type form by collisions with cold He buffer gas in the trap. This backward isomerization proceeds with a time constant of 100 μs under our experimental conditions. In this study, we evaluated the temperatures of the chain isomers during the backward isomerization on the basis of the spectral features.
Collapse
Affiliation(s)
- Masayoshi Ozeki
- Department of Chemistry, School of Science, Kitasato University, Sagamihara 252-0373, Japan
| | - Masataka Orito
- Department of Chemistry, School of Science, Kitasato University, Sagamihara 252-0373, Japan
| | - Haruki Ishikawa
- Department of Chemistry, School of Science, Kitasato University, Sagamihara 252-0373, Japan
| |
Collapse
|
3
|
Otaki H, Ishiuchi SI, Fujii M, Sugita Y, Yagi K. Similarity scores of vibrational spectra reveal the atomistic structure of pentapeptides in multiple basins. Phys Chem Chem Phys 2024; 26:9906-9914. [PMID: 38477212 DOI: 10.1039/d4cp00064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Vibrational spectroscopy combined with theoretical calculations is a powerful tool for analyzing the interaction and conformation of peptides at the atomistic level. Nonetheless, identifying the structure becomes increasingly difficult as the peptide size grows large. One example is acetyl-SIVSF-N-methylamide, a capped pentapeptide, whose atomistic structure has remained unknown since its first observation [T. Sekiguchi, M. Tamura, H. Oba, P. Çarçarbal, R. R. Lozada-Garcia, A. Zehnacker-Rentien, G. Grégoire, S. Ishiuchi and M. Fujii, Angew. Chem., Int. Ed., 2018, 57, 5626-5629]. Here, we propose a novel conformational search method, which exploits the structure-spectrum correlation using a similarity score that measures the agreement of theoretical and experimental spectra. Surprisingly, the two conformers have distinctly different energy and geometry. The second conformer is 25 kJ mol-1 higher in energy than the other, lowest-energy conformer. The result implies that there are multiple pathways in the early stage of the folding process: one to the global minimum and the other to a different basin. Once such a structure is established, the second conformer is unlikely to overcome the barrier to produce the most stable structure due to a vastly different hydrogen bond network of the backbone. Our proposed method can characterize the lowest-energy conformer and kinetically trapped, high-energy conformers of complex biomolecules.
Collapse
Affiliation(s)
- Hiroki Otaki
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, Nagasaki 852-8521, Japan
| | - Shun-Ichi Ishiuchi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masaaki Fujii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
4
|
Kato T, Fujii A. Experimental confirmation of the Badger-Bauer rule in the protonated methanol clusters: weak hydrogen bond formation as a measure of terminal OH acidity in hydrogen bond networks. Phys Chem Chem Phys 2023; 25:30188-30192. [PMID: 37920966 DOI: 10.1039/d3cp04644c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
We report a linear correlation between the OH stretch frequency shift of the protonated methanol cluster, H+(MeOH)n, upon the π-hydrogen bond formation with benzene and the enthalpy change in clustering of H+(MeOH)n to H+(MeOH)n+1. This result suggests a new method to explore hydrogen bond strength in hydrogen bond networks.
Collapse
Affiliation(s)
- Takeru Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
5
|
Zamith S, Kassem A, L'Hermite JM, Joblin C, Cuny J. Threshold collision induced dissociation of protonated water clusters. J Chem Phys 2023; 159:184302. [PMID: 37955320 DOI: 10.1063/5.0167551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
We report threshold collision induced dissociation experiments on protonated water clusters thermalized at low temperature for sizes n = 19-23. Fragmentation cross sections are recorded as a function of the collision energy and analyzed with a statistical model. This model allows us to account for dissociation cascades and provides values for the dissociation energies of each cluster. These values, averaging around 0.47 eV, are in good agreement with theoretical predictions at various levels of theory. Furthermore, the dissociation energies show a trend for the n = 21 magic and n = 22 anti-magic numbers relative to their neighbours, which is also in agreement with theory. These results provide further evidence to resolve the disagreement between previously published experimental values. A careful quantitative treatment of cascade dissociation in this model introduces interdependence between the dissociation energies of neighboring sizes, which reduces the number of free fitting parameters and improves both reliability and uncertainties on absolute dissociation energies deduced from experiments.
Collapse
Affiliation(s)
- Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Ali Kassem
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), UMR5277, Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
6
|
Khuu T, Rana A, Edington SC, Yang N, McCoy AB, Johnson MA. Observation of Slow Eigen-Zundel Interconversion in H +(H 2O) 6 Clusters upon Isomer-Selective Vibrational Excitation and Buffer Gas Cooling in a Cryogenic Ion Trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:737-744. [PMID: 36972483 DOI: 10.1021/jasms.3c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The formation of isomers when trapping floppy cluster ions in a temperature-controlled ion trap is a generally observed phenomenon. This involves collisional quenching of the ions initially formed at high temperature by buffer gas cooling until their internal energies fall below the barriers in the potential energy surface that separate them. Here we explore the kinetics at play in the case of the two isomers adopted by the H+(H2O)6 cluster ion that differ in the proton accommodation motif. One of these is most like the Eigen cation with a tricoordinated hydronium motif (denoted E), and the other is most like the Zundel ion with the proton equally shared between two water molecules (denoted Z). After initial cooling to about 20 K in the radiofrequency (Paul) trap, the relative populations of these two spectroscopically distinct isomers are abruptly changed through isomer-selective photoexcitation of bands in the OH stretching region with a pulsed (∼6 ns) infrared laser while the ions are in the trap. We then monitor the relaxation of the vibrationally excited clusters and reformation of the two cold isomers by recording infrared photodissociation spectra with a second IR laser as a function of delay time from the initial excitation. The latter spectra are obtained after ejecting the trapped ions into a time-of-flight photofragmentation mass spectrometer, thus enabling long (∼0.1 s) delay times. Excitation of the Z isomer is observed to display long-lived vibrationally excited states that are collisionally cooled on a ms time scale, some of which quench into the E isomer. These excited E species then display spontaneous interconversion to the Z form on a ∼10 ms time scale. These qualitative observations set the stage for a series of experimental measurements that can provide quantitative benchmarks for theoretical simulations of cluster dynamics and the potential energy surfaces that underlie them.
Collapse
Affiliation(s)
- Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Abhijit Rana
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Sean C Edington
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Nan Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Harville PA, Edington SC, Moss OC, Huang M, McCoy AB, Johnson MA. High-resolution vibrational predissociation spectroscopy of I − · H 2O by single-mode CW infrared excitation in a 3D cryogenic ion trap. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2174784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Payten A. Harville
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Sean C. Edington
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Olivia C. Moss
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, United States of America
| | - Anne B. McCoy
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Mark A. Johnson
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Yang N, Huchmala RM, McCoy AB, Johnson MA. Character of the OH Bend-Stretch Combination Band in the Vibrational Spectra of the "Magic" Number H 3O +(H 2O) 20 and D 3O +(D 2O) 20 Cluster Ions. J Phys Chem Lett 2022; 13:8116-8121. [PMID: 35998327 DOI: 10.1021/acs.jpclett.2c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental transitions that contribute to the diffuse OH stretching spectrum of water are known to increase in width and intensity with increasing red shift from the free OH frequency. In contrast, the profile of the higher-energy combination band involving the OH stretching and the intramolecular HOH bending modes displays a qualitatively different spectral shape with a much faster falloff on the lower-energy side. We elucidate the molecular origin of this difference by analyzing the shapes of the combination bands in the IR spectra of cryogenically cooled H3O+(H2O)20 and D3O+(D2O)20 clusters. The difference in the shapes of the bands is traced to differences in the dependence of their transition dipole matrix elements on the hydrogen-bonding environment. The fact that individual transitions across the combination band envelope have similar intensities makes it a useful way to determine the participation of various sites in extended H-bonding networks.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Rachel M Huchmala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Tzeli D, Xantheas SS. Breaking covalent bonds in the context of the many-body expansion (MBE). I. The purported "first row anomaly" in XH n (X = C, Si, Ge, Sn; n = 1-4). J Chem Phys 2022; 156:244303. [PMID: 35778077 DOI: 10.1063/5.0095329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new, novel implementation of the Many-Body Expansion (MBE) to account for the breaking of covalent bonds, thus extending the range of applications from its previous popular usage in the breaking of hydrogen bonds in clusters to molecules. A central concept of the new implementation is the in situ atomic electronic state of an atom in a molecule that casts the one-body term as the energy required to promote it to that state from its ground state. The rest of the terms correspond to the individual diatomic, triatomic, etc., fragments. Its application to the atomization energies of the XHn series, X = C, Si, Ge, Sn and n = 1-4, suggests that the (negative, stabilizing) 2-B is by far the largest term in the MBE with the higher order terms oscillating between positive and negative values and decreasing dramatically in size with increasing rank of the expansion. The analysis offers an alternative explanation for the purported "first row anomaly" in the incremental Hn-1X-H bond energies seen when these energies are evaluated with respect to the lowest energy among the states of the XHn molecules. Due to the "flipping" of the ground/first excited state between CH2 (3B1 ground state, 1A1 first excited state) and XH2, X = Si, Ge, Sn (1A1 ground state, 3B1 first excited state), the overall picture does not exhibit a "first row anomaly" when the incremental bond energies are evaluated with respect to the molecular states having the same in situ atomic states.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Mississippi K1-83, Richland, Washington 99352, USA
| |
Collapse
|
10
|
Mitra S, Khuu T, Choi TH, Huchmala RM, Jordan KD, McCoy AB, Johnson MA. Vibrational Signatures of HNO 3 Acidity When Complexed with Microhydrated Alkali Metal Ions, M +·(HNO 3)(H 2O) n=5 (M = Li, K, Na, Rb, Cs), at 20 K. J Phys Chem A 2022; 126:1640-1647. [PMID: 35249322 DOI: 10.1021/acs.jpca.1c10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The speciation of strong acids like HNO3 under conditions of restricted hydration is an important factor in the rates of chemical reactions at the air-water interface. Here, we explore the trade-offs at play when HNO3 is attached to alkali ions (Li+-Cs+) with four water molecules in their primary hydration shells. This is achieved by analyzing the vibrational spectra of the M+·(HNO3)(H2O)5 clusters cooled to about 20 K in a cryogenic photofragmentation mass spectrometer. The local acidity of the acidic OH group is estimated by the extent of the red shift in its stretching frequency when attached to a single water molecule. The persistence of this local structural motif (HNO3-H2O) in all of these alkali metal clusters enables us to determine the competition between the effect of the direct complexation of the acid with the cation, which acts to enhance acidity, and the role of the water network in the first hydration shell around the ions, which acts to counter (screen) the intrinsic effect of the ion. Analysis of the vibrational features associated with the acid molecule, as well as those of the water network, reveals how cooperative interactions in the microhydration regime conspire to effectively offset the intrinsic enhancement of HNO3 acidity afforded by attachment to the smaller cations.
Collapse
Affiliation(s)
- Sayoni Mitra
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Tae Hoon Choi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rachel M Huchmala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kenneth D Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
12
|
Chen L, Dean JLS, Fournier JA. Time-Domain Vibrational Action Spectroscopy of Cryogenically Cooled, Messenger-Tagged Ions Using Ultrafast IR Pulses. J Phys Chem A 2021; 125:10235-10244. [PMID: 34788043 DOI: 10.1021/acs.jpca.1c01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present the initial steps toward developing a framework that will enable the characterization of photoinitiated dynamics within large molecular ions in the gas phase with temporal and energy resolution. We combine the established techniques of tag-loss action spectroscopy on cryogenically trapped molecular ions with ultrafast vibrational spectroscopy by measuring the linear action spectrum of N2-tagged protonated diglycine (GlyGlyH+·N2) with an ultrafast infrared (IR) pulse pair. The presented time-domain data demonstrate that the excited-state vibrational populations in the tagged parent ions are modulated by the ultrafast IR pulse pair and encoded through the messenger tag-loss action response. The Fourier transform of the time-domain action interferograms yields the linear frequency-domain vibrational spectrum of the ion ensemble, and we show that this spectrum matches the linear spectrum collected in a traditional manner using a frequency-resolved IR laser. Time- and frequency-domain interpretations of the data are considered and discussed. Finally, we demonstrate the acquisition of nonlinear signals through cross-polarization pump-probe experiments. These results validate the prerequisite first steps of combining tag-loss action spectroscopy with two-dimensional IR spectroscopy for probing dynamics in gas-phase molecular ions.
Collapse
Affiliation(s)
- Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| |
Collapse
|
13
|
Niedner‐Schatteburg G, Kappes MM. Advancing Inorganic Coordination Chemistry by Spectroscopy of Isolated Molecules: Methods and Applications. Chemistry 2021; 27:15027-15042. [PMID: 34636096 PMCID: PMC8596414 DOI: 10.1002/chem.202102815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/14/2022]
Abstract
A unique feature of the work carried out in the Collaborative Research Center 3MET continues to be its emphasis on innovative, advanced experimental methods which hyphenate mass-selection with further analytical tools such as laser spectroscopy for the study of isolated molecular ions. This allows to probe the intrinsic properties of the species of interest free of perturbing solvent or matrix effects. This review explains these methods and uses examples from past and ongoing 3MET studies of specific classes of multicenter metal complexes to illustrate how coordination chemistry can be advanced by applying them. As a corollary, we will show how the challenges involved in providing well-defined, for example monoisomeric, samples of the molecular ions have helped to further improve the methods themselves thus also making them applicable to many other areas of chemistry.
Collapse
Affiliation(s)
| | - Manfred M. Kappes
- Institute of Physical Chemistry and Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76128KarlsruheGermany
| |
Collapse
|
14
|
Chen L, Fournier JA. Probing Hydrogen-Bonding Interactions within Phenol-Benzimidazole Proton-Coupled Electron Transfer Model Complexes with Cryogenic Ion Vibrational Spectroscopy. J Phys Chem A 2021; 125:9288-9297. [PMID: 34652915 DOI: 10.1021/acs.jpca.1c05879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen-bonding interactions within a series of phenol-benzimidazole model proton-coupled electron transfer (PCET) dyad complexes are characterized using cryogenic ion vibrational spectroscopy. A highly red-shifted and surprisingly broad (>1000 cm-1) transition is observed in one of the models and assigned to the phenolic OH stretch strongly H-bonded to the N(3) benzimidazole atom. The breadth is attributed to a combination of anharmonic Fermi-resonance coupling between the OH stretch and background doorway states involving OH bending modes and strong coupling of the OH stretch frequency to structural deformations along the proton-transfer coordinate accessible at the vibrational zero-point level. The other models show unexpected protonation of the benzimidazole group upon electrospray ionization instead of at more basic remote amine/amide groups. This leads to the formation of HO-+HN(3) H-bond motifs that are much weaker than the OH-N(3) H-bond arrangement. H-bonding between the N(1)H+ benzimidazole group and the carbonyl on the tyrosine backbone is the stronger and preferred interaction in these complexes. The results show that conjugation effects, secondary H-bond interactions, and H-bond soft modes strongly influence the OH-N(3) interaction and highlight the importance of the direct monitoring of proton stretch transitions in characterizing the proton-transfer reaction coordinate in PCET systems.
Collapse
Affiliation(s)
- Liangyi Chen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Zeng HJ, Johnson MA. Demystifying the Diffuse Vibrational Spectrum of Aqueous Protons Through Cold Cluster Spectroscopy. Annu Rev Phys Chem 2021; 72:667-691. [PMID: 33646816 DOI: 10.1146/annurev-physchem-061020-053456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ease with which the pH is routinely determined for aqueous solutions masks the fact that the cationic product of Arrhenius acid dissolution, the hydrated proton, or H+(aq), is a remarkably complex species. Here, we review how results obtained over the past 30 years in the study of H+⋅(H2O)n cluster ions isolated in the gas phase shed light on the chemical nature of H+(aq). This effort has also revealed molecular-level aspects of the Grotthuss relay mechanism for positive-charge translocation in water. Recently developed methods involving cryogenic cooling in radiofrequency ion traps and the application of two-color, infrared-infrared (IR-IR) double-resonance spectroscopy have established a clear picture of how local hydrogen-bond topology drives the diverse spectral signatures of the excess proton. This information now enables a new generation of cluster studies designed to unravel the microscopic mechanics underlying the ultrafast relaxation dynamics displayed by H+(aq).
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA;
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA;
| |
Collapse
|