1
|
Lopez-Ceja J, Flores V, Juliano S, Machler S, Smith S, Mansingh G, Shen M, Tanjeem N. Programmable Crowding and Tunable Phases in a Binary Mixture of Colloidal Particles under Light-Driven Thermal Convection. J Phys Chem B 2024; 128:9244-9254. [PMID: 39047259 DOI: 10.1021/acs.jpcb.4c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of "plasmonic heater" gold nanoparticles and "assembly building block" microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1-10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases-colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.
Collapse
Affiliation(s)
- Jose Lopez-Ceja
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Vanessa Flores
- Department of Mechanical Engineering, California State University, Fullerton, California 92831, United states
| | - Shirlaine Juliano
- Department of Biology, California State University, Fullerton, California 92831, United states
| | - Sean Machler
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Stephen Smith
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Gargi Mansingh
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Meng Shen
- Department of Physics, California State University, Fullerton, California 92831, United states
| | - Nabila Tanjeem
- Department of Physics, California State University, Fullerton, California 92831, United states
| |
Collapse
|
2
|
Saud KT, Solomon MJ. Microdynamics of active particles in defect-rich colloidal crystals. J Colloid Interface Sci 2023; 641:950-960. [PMID: 36989821 DOI: 10.1016/j.jcis.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/04/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
HYPOTHESIS Because they are self-propulsive, active colloidal particles can interact with their environment in ways that differ from passive, Brownian particles. Here, we explore how interactions in different microstructural regions may contribute to colloidal crystal annealing. EXPERIMENTS We investigate active particles propagating in a quasi-2D colloidal crystal monolayer produced by alternating current electric fields (active-to-passive particle ratio ∼ 1:720). The active particle is a platinum Janus sphere propelled by asymmetric decomposition of hydrogen peroxide. Crystals are characterized for changes in void properties. The mean-squared-displacement of Janus particles are measured to determine how active microdynamics depend on the local microstructure, which is comprised of void regions, void-adjacent regions (defined as within three particle diameters of a void), and interstitial regions. FINDINGS At active particle energy EA = 2.55 kBT, the average void size increases as much as three times and the average void anisotropy increases about 40% relative to the passive case. The average microdynamical enhancement, <δ(t)>, of Janus particles in the crystal relative to an equivalent passive Janus particle is reduced compared to that of a free, active particle (<δ(t) > is 1.88 ± 0.04 and 2.66 ± 0.08, respectively). The concentration of active particles is enriched in void and void-adjacent regions. Active particles exhibit the greatest change in dynamics relative to the passive control in void-adjacent regions (<δ(t)> = 2.58 ± 0.06). The results support the conjecture that active particle microdynamical enhancement in crystal lattices is affected by local defect structure.
Collapse
Affiliation(s)
- Keara T Saud
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Michael J Solomon
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Boccardo F, Pierre-Louis O. Controlling the Shape of Small Clusters with and without Macroscopic Fields. PHYSICAL REVIEW LETTERS 2022; 128:256102. [PMID: 35802436 DOI: 10.1103/physrevlett.128.256102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Despite major advances in the understanding of the formation and dynamics of nanoclusters in the past decades, theoretical bases for the control of their shape are still lacking. We investigate strategies for driving fluctuating few-particle clusters to an arbitrary target shape in minimum time with or without an external field. This question is recast into a first passage problem, solved numerically, and discussed within a high temperature expansion. Without field, large-enough low-energy target shapes exhibit an optimal temperature at which they are reached in minimum time. We then compute the optimal way to set an external field to minimize the time to reach the target, leading to a gain of time that grows when increasing cluster size or decreasing temperature. This gain can shift the optimal temperature or even create one. Our results could apply to clusters of atoms at equilibrium, and colloidal or nanoparticle clusters under thermo- or electrophoresis.
Collapse
Affiliation(s)
- Francesco Boccardo
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
| |
Collapse
|
4
|
Akter M, Keya JJ, Kayano K, Kabir AMR, Inoue D, Hess H, Sada K, Kuzuya A, Asanuma H, Kakugo A. Cooperative cargo transportation by a swarm of molecular machines. Sci Robot 2022; 7:eabm0677. [PMID: 35442703 DOI: 10.1126/scirobotics.abm0677] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cooperation is a strategy that has been adopted by groups of organisms to execute complex tasks more efficiently than single entities. Cooperation increases the robustness and flexibility of the working groups and permits sharing of the workload among individuals. However, the utilization of this strategy in artificial systems at the molecular level, which could enable substantial advances in microrobotics and nanotechnology, remains highly challenging. Here, we demonstrate molecular transportation through the cooperative action of a large number of artificial molecular machines, photoresponsive DNA-conjugated microtubules driven by kinesin motor proteins. Mechanical communication via conjugated photoresponsive DNA enables these microtubules to organize into groups upon photoirradiation. The groups of transporters load and transport cargo, and cargo unloading is achieved by dissociating the groups into single microtubules. The group formation permits the loading and transport of cargoes with larger sizes and in larger numbers over long distances compared with single transporters. We also demonstrate that cargo can be collected at user-determined locations defined by ultraviolet light exposure. This work demonstrates cooperative task performance by molecular machines, which will help to construct molecular robots with advanced functionalities in the future.
Collapse
Affiliation(s)
- M Akter
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - J J Keya
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - K Kayano
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - A M R Kabir
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - D Inoue
- Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | - H Hess
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - K Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - A Kuzuya
- Department of Chemistry and Materials Engineering, Kansai University, Osaka 564-8680, Japan
| | - H Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - A Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
5
|
Shape multistability in flexible tubular crystals through interactions of mobile dislocations. Proc Natl Acad Sci U S A 2022; 119:2115423119. [PMID: 35110407 PMCID: PMC8833160 DOI: 10.1073/pnas.2115423119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Crystalline sheets rolled up into cylinders occur in diverse biological and synthetic systems, including carbon nanotubes, biofilaments of the cellular cytoskeleton, and packings of colloidal particles. In this work, we show, computationally, that such tubular crystals can be programmed with reconfigurable shapes, due to motions of defects that interrupt the periodicity of the crystalline lattice. By identifying and exploiting stable patterns of these defects, we cause tubular crystals to relax into desired target geometries, a design principle that could guide the creation of versatile colloidal analogues to nanotubes. Our results suggest routes to tunable and switchable material properties in ordered, soft materials on deformable surfaces. We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometries, due to an interplay of effective defect interactions with out-of-tangent-plane deformations that reorient the tube axis. Importantly, this interplay often stabilizes defect configurations quite distinct from those predicted for a two-dimensional crystal confined to the surface of a rigid cylinder. We find that relative and absolute stability of competing states depend strongly on control parameters such as bending rigidity, applied stress, and spontaneous curvature. Using stable dislocation pair arrangements as building blocks, we demonstrate that targeted macroscopic three-dimensional conformations of thin crystalline tubes can be programmed by imposing certain sparse patterns of defects. Our findings reveal a broad design space for controllable and reconfigurable colloidal tube geometries, with potential relevance also to architected carbon nanotubes and microtubules.
Collapse
|
6
|
Braverman L, Scheibner C, VanSaders B, Vitelli V. Topological Defects in Solids with Odd Elasticity. PHYSICAL REVIEW LETTERS 2021; 127:268001. [PMID: 35029487 DOI: 10.1103/physrevlett.127.268001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Crystallography typically studies collections of point particles whose interaction forces are the gradient of a potential. Lifting this assumption generically gives rise in the continuum limit to a form of elasticity with additional moduli known as odd elasticity. We show that such odd elastic moduli modify the strain induced by topological defects and their interactions, even reversing the stability of, otherwise, bound dislocation pairs. Beyond continuum theory, isolated dislocations can self propel via microscopic work cycles active at their cores that compete with conventional Peach-Koehler forces caused, for example, by an ambient torque density. We perform molecular dynamics simulations isolating active plastic processes and discuss their experimental relevance to solids composed of spinning particles, vortexlike objects, and robotic metamaterials.
Collapse
Affiliation(s)
- Lara Braverman
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Colin Scheibner
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bryan VanSaders
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Vincenzo Vitelli
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
- Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|