1
|
Chinchilla P, Wang B, Lubin JH, Yang X, Roth J, Khare SD, Baum J. Synergistic Multi-Pronged Interactions Mediate the Effective Inhibition of Alpha-Synuclein Aggregation by the Chaperone HtrA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624572. [PMID: 39651184 PMCID: PMC11623516 DOI: 10.1101/2024.11.25.624572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The misfolding, aggregation, and the seeded spread of alpha synuclein (α-Syn) aggregates are linked to the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). Understanding the mechanisms by which chaperone proteins prevent the production and seeding of α-Syn aggregates is crucial for developing effective therapeutic leads for tackling neurodegenerative diseases. We show that a catalytically inactive variant of the chaperone HtrA1 (HtrA1*) effectively inhibits both α-Syn monomer aggregation and templated fibril seeding, and demonstrate that this inhibition is mediated by synergistic interactions between its PDZ and Protease domains and α-Syn. Using biomolecular NMR, AFM and Rosetta-based computational analyses, we propose that the PDZ domain interacts with the C-terminal end of the monomer and the intrinsically disordered C-terminal domain of the α-Syn fibril. Furthermore, in agreement with sequence specificity calculations, the Protease domain cleaves in the aggregation-prone NAC domain at site T92/A93 in the monomer. Thus, through multi-pronged interactions and multi-site recognition of α-Syn, HtrA1* can effectively intervene at different stages along the α-Syn aggregation pathway, making it a robust inhibitor of α-Syn aggregation and templated seeding. Our studies illustrate, at high resolution, the crucial role of HtrA1 interactions with both the intrinsically disordered α-Syn monomers and with the dynamic flanking regions around the fibril core for inhibition of aggregation. This inhibition mechanism of the HtrA1 chaperone may provide a natural mechanistic blueprint for highly effective therapeutic agents against protein aggregation. Significance Statement PD and other synucleinopathies are marked by misfolding and aggregation of α-Syn, forming higher-order species that propagate aggregation in a prion-like manner. Understanding how chaperone proteins inhibit α-Syn aggregation and spread is essential for therapeutic development against neurodegeneration. Through an integrative approach of solution-based NMR, AFM, aggregation kinetics, and computational analysis, we reveal how a catalytically inactive variant of the chaperone HtrA1 effectively disrupts aggregation pathways. We find that the inactive Protease and PDZ domains of HtrA1 synergistically bind to key intrinsically disordered sites on both α-Syn monomers and fibrils, thereby effectively inhibiting both aggregation and templated seeding. Our work provides a natural and unique blueprint for designing inhibitors to prevent the formation and seeding of aggregates in neurodegenerative diseases.
Collapse
|
2
|
Dumarieh R, Lagasca D, Krishna S, Kragelj J, Xiao Y, Frederick KK. Structural context modulates the conformational ensemble of the intrinsically disordered amino terminus of α-synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621304. [PMID: 39553926 PMCID: PMC11565972 DOI: 10.1101/2024.10.31.621304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Regions of intrinsic disorder play crucial roles in biological systems, yet they often elude characterization by conventional biophysical techniques. To capture conformational distributions across different timescales, we employed a freezing approach coupled with solid-state NMR analysis. Using segmentally isotopically labeled α-synuclein (α-syn), we investigated the conformational preferences of the six alanines, three glycines, and a single site (L8) in the disordered amino terminus under three distinct conditions: in 8 M urea, as a frozen monomer in buffer, and within the disordered regions flanking the amyloid core. The experimental spectra varied significantly among these conditions and deviated from those of a statistical coil. In 8 M urea, monomeric α-syn exhibited the most restricted conformational sampling, rarely accessing chemical shifts characteristic of α-helices or β-strands. In buffer, monomeric α-syn showed broader conformational sampling, favoring α-helical conformations and, to a lesser extent, random coil states. Notably, amino acids in the disordered regions flanking the amyloid core demonstrated the most extensive conformational sampling, with broad peaks encompassing the entire range of possible chemical shifts and a marked preference for highly extended β-strand conformations. Collectively, this work demonstrates that intrinsically disordered regions exhibit distinct conformational preferences, which are influenced not only by the chemical environment but also by the conformations of adjacent protein sequences. The differences in the conformational ensembles of the disordered amino terminus may explain why the monomer and the amyloid form of α-syn interact with different biomolecules inside cells.
Collapse
Affiliation(s)
- Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
3
|
Kizhakkeduth ST, Abdul Vahid A, Oliyantakath Hassan MS, Parambil AK, Jain P, Vijayan V. Molecular Interactions between Tau Protein and TIA1: Distinguishing Physiological Condensates from Pathological Fibrils. ACS Chem Neurosci 2024. [PMID: 39370876 DOI: 10.1021/acschemneuro.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
The interaction of tau protein with other key proteins essential for stress granule formation determines their functional and pathological impact. In a biological framework, the synergy between Alzheimer's associated tau protein and the stress granule core protein TIA1 is widely recognized. However, the molecular details of this association remain unclear. In this study, we throw light on the importance of the state in which the TIA1 exists in mediating its association with the tau protein. Investigations were carried out on the three repeat constructs of tau (K19) and different structures formed by TIA1. Specifically, the condensate formed by TIA1 full-length (TIA1-FL) protein as well as fibril formed by low complexity domain of TIA1 (TIA1-LCD). The dynamics of K19 inside TIA1-FL condensates and the aggregation kinetics of K19 in the presence of TIA1-LCD fibrils were examined using various biophysical techniques. Relaxation-based solution NMR spectroscopic investigations suggest a weak interaction with TIA1 condensates and indicated a reduction in the dynamics of K19 within these TIA1 condensates. In contrast, a significant interaction was observed between K19, and TIA1-LCD fibrils primarily mediated through 321KCGS324 and 306VQIVYKPVDLSKV317. Our findings emphasize that the interaction between Tau and TIA1 varies depending on whether TIA1 is in its physiological condensate form or its pathological fibril state.
Collapse
Affiliation(s)
- Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Muhammed Shafeek Oliyantakath Hassan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Anagha K Parambil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Parul Jain
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
4
|
Ansari S, Lagasca D, Dumarieh R, Xiao Y, Krishna S, Li Y, Frederick KK. In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612142. [PMID: 39314304 PMCID: PMC11419106 DOI: 10.1101/2024.09.09.612142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
Collapse
Affiliation(s)
- Shoyab Ansari
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yang Li
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
5
|
Palmioli A, Airoldi C. An NMR Toolkit to Probe Amyloid Oligomer Inhibition in Neurodegenerative Diseases: From Ligand Screening to Dissecting Binding Topology and Mechanisms of Action. Chempluschem 2024; 89:e202400243. [PMID: 38712695 DOI: 10.1002/cplu.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The aggregation of amyloid peptides and proteins into toxic oligomers is a hallmark of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Machado-Joseph's disease, and transmissible spongiform encephalopathies. Inhibition of amyloid oligomers formation and interactions with biological counterparts, as well as the triggering of non-toxic amorphous aggregates, are strategies towards preventive interventions against these pathologies. NMR spectroscopy addresses the need for structural characterization of amyloid proteins and their aggregates, their binding to inhibitors, and rapid screening of compound libraries for ligand identification. Here we briefly discuss the solution experiments constituting the NMR spectroscopist's toolkit and provide examples of their application.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
6
|
Dewison KM, Rowlinson B, Machin JM, Crossley JA, Thacker D, Wilkinson M, Ulamec SM, Khan GN, Ranson NA, van Oosten-Hawle P, Brockwell DJ, Radford SE. Residues 2 to 7 of α-synuclein regulate amyloid formation via lipid-dependent and lipid-independent pathways. Proc Natl Acad Sci U S A 2024; 121:e2315006121. [PMID: 39133842 PMCID: PMC11348338 DOI: 10.1073/pnas.2315006121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/09/2024] [Indexed: 08/29/2024] Open
Abstract
Amyloid formation by α-synuclein (αSyn) occurs in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Deciphering the residues that regulate αSyn amyloid fibril formation will not only provide mechanistic insight but may also reveal targets to prevent and treat disease. Previous investigations have identified several regions of αSyn to be important in the regulation of amyloid formation, including the non-amyloid-β component (NAC), P1 region (residues 36 to 42), and residues in the C-terminal domain. Recent studies have also indicated the importance of the N-terminal region of αSyn for both its physiological and pathological roles. Here, the role of residues 2 to 7 in the N-terminal region of αSyn is investigated in terms of their ability to regulate amyloid fibril formation in vitro and in vivo. Deletion of these residues (αSynΔN7) slows the rate of fibril formation in vitro and reduces the capacity of the protein to be recruited by wild-type (αSynWT) fibril seeds, despite cryo-EM showing a fibril structure consistent with those of full-length αSyn. Strikingly, fibril formation of αSynΔN7 is not induced by liposomes, despite the protein binding to liposomes with similar affinity to αSynWT. A Caenorhabditis elegans model also showed that αSynΔN7::YFP forms few puncta and lacks motility and lifespan defects typified by expression of αSynWT::YFP. Together, the results demonstrate the involvement of residues 2 to 7 of αSyn in amyloid formation, revealing a target for the design of amyloid inhibitors that may leave the functional role of the protein in membrane binding unperturbed.
Collapse
Affiliation(s)
- Katherine M. Dewison
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Benjamin Rowlinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jonathan M. Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Joel A. Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sabine M. Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - G. Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | | | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
7
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
8
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Suladze S, Sustay Martinez C, Rodriguez Camargo DC, Engler J, Rodina N, Sarkar R, Zacharias M, Reif B. Structural Insights into Seeding Mechanisms of hIAPP Fibril Formation. J Am Chem Soc 2024; 146:13783-13796. [PMID: 38723619 PMCID: PMC11117405 DOI: 10.1021/jacs.3c14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of β-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended β-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.
Collapse
Affiliation(s)
- Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Sustay Martinez
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Diana C. Rodriguez Camargo
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Jonas Engler
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| | - Martin Zacharias
- Center
for
Functional Protein Assemblies (CPA), Department of Bioscience, TUM
School of Natural Sciences, Technische Universität
München, Ernst-Otto-Fischer-Straße
8, 85747 Garching, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences, School of Natural
Sciences, Technische Universität
München, 85747 Garching, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology
(STB), Ingolstädter
Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Santos J, Cuellar J, Pallarès I, Byrd EJ, Lends A, Moro F, Abdul-Shukkoor MB, Pujols J, Velasco-Carneros L, Sobott F, Otzen DE, Calabrese AN, Muga A, Pedersen JS, Loquet A, Valpuesta JM, Radford SE, Ventura S. A Targetable N-Terminal Motif Orchestrates α-Synuclein Oligomer-to-Fibril Conversion. J Am Chem Soc 2024; 146:12702-12711. [PMID: 38683963 PMCID: PMC11082882 DOI: 10.1021/jacs.4c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Oligomeric species populated during α-synuclein aggregation are considered key drivers of neurodegeneration in Parkinson's disease. However, the development of oligomer-targeting therapeutics is constrained by our limited knowledge of their structure and the molecular determinants driving their conversion to fibrils. Phenol-soluble modulin α3 (PSMα3) is a nanomolar peptide binder of α-synuclein oligomers that inhibits aggregation by blocking oligomer-to-fibril conversion. Here, we investigate the binding of PSMα3 to α-synuclein oligomers to discover the mechanistic basis of this protective activity. We find that PSMα3 selectively targets an α-synuclein N-terminal motif (residues 36-61) that populates a distinct conformation in the mono- and oligomeric states. This α-synuclein region plays a pivotal role in oligomer-to-fibril conversion as its absence renders the central NAC domain insufficient to prompt this structural transition. The hereditary mutation G51D, associated with early onset Parkinson's disease, causes a conformational fluctuation in this region, leading to delayed oligomer-to-fibril conversion and an accumulation of oligomers that are resistant to remodeling by molecular chaperones. Overall, our findings unveil a new targetable region in α-synuclein oligomers, advance our comprehension of oligomer-to-amyloid fibril conversion, and reveal a new facet of α-synuclein pathogenic mutations.
Collapse
Affiliation(s)
- Jaime Santos
- Institut
de Biotecnologia i Biomedicina and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jorge Cuellar
- Department
of Macromolecular Structures, Centro Nacional
de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Irantzu Pallarès
- Institut
de Biotecnologia i Biomedicina and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Emily J. Byrd
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Alons Lends
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac 33600, France
| | - Fernando Moro
- Instituto
Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología
Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, Leioa 48940, Spain
| | | | - Jordi Pujols
- Institut
de Biotecnologia i Biomedicina and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Lorea Velasco-Carneros
- Instituto
Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología
Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, Leioa 48940, Spain
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Molecular Biology and
Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Antonio N. Calabrese
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Arturo Muga
- Instituto
Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología
Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, Leioa 48940, Spain
| | - Jan Skov Pedersen
- Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Antoine Loquet
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac 33600, France
| | - Jose María Valpuesta
- Department
of Macromolecular Structures, Centro Nacional
de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Sheena E. Radford
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Salvador Ventura
- Institut
de Biotecnologia i Biomedicina and Departament de Bioquímica
i Biologia Molecular, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
11
|
Santos J, Pallarès I, Ventura S. A glimpse into the structural properties of α-synuclein oligomers. Biofactors 2024; 50:439-449. [PMID: 38063360 DOI: 10.1002/biof.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 06/15/2024]
Abstract
α-Synuclein (αS) aggregation is the main neurological hallmark of a group of debilitating neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease is the most prevalent. αS oligomers formed during the initial stages of aggregation are considered key pathogenic drivers of disease onset and progression, standing as privileged targets for therapeutic intervention and diagnosis. However, the structure of αS oligomers and the mechanistic basis of oligomer to fibril conversion are yet poorly understood, thereby precluding the rational formulation of strategies aimed at targeting oligomeric species. In this review, we delve into the recent advances in the structural and mechanistic characterization of αS oligomers. We also discuss how these advances are transforming our understanding of these elusive species and paving the way for oligomer-targeting therapeutics and diagnosis.
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Stillman NH, Joseph JA, Ahmed J, Baysah CZ, Dohoney RA, Ball TD, Thomas AG, Fitch TC, Donnelly CM, Kumar S. Protein mimetic 2D FAST rescues alpha synuclein aggregation mediated early and post disease Parkinson's phenotypes. Nat Commun 2024; 15:3658. [PMID: 38688913 PMCID: PMC11061149 DOI: 10.1038/s41467-024-47980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson's disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson's disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson's disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.
Collapse
Affiliation(s)
- Nicholas H Stillman
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Johnson A Joseph
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Jemil Ahmed
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
- Molecular and Cellular Biophysics Program, Boettcher West, Room 228, 2050 E. Iliff Ave, University of Denver, Denver, CO, 80210, USA
| | - Charles Zuwu Baysah
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Ryan A Dohoney
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Tyler D Ball
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Alexandra G Thomas
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Tessa C Fitch
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Courtney M Donnelly
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA
| | - Sunil Kumar
- Department of Chemistry and Biochemistry, F.W. Olin Hall, 2190 E Iliff Ave, University of Denver, Denver, CO, 80210, USA.
- The Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave, Suite 579, University of Denver, Denver, CO, 80208, USA.
- Molecular and Cellular Biophysics Program, Boettcher West, Room 228, 2050 E. Iliff Ave, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
13
|
Makasewicz K, Linse S, Sparr E. Interplay of α-synuclein with Lipid Membranes: Cooperative Adsorption, Membrane Remodeling and Coaggregation. JACS AU 2024; 4:1250-1262. [PMID: 38665673 PMCID: PMC11040681 DOI: 10.1021/jacsau.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 04/28/2024]
Abstract
α-Synuclein is a small neuronal protein enriched at presynaptic termini. It is hypothesized to play a role in neurotransmitter release and synaptic vesicle cycling, while the formation of α-synuclein amyloid fibrils is associated with several neurodegenerative diseases, most notably Parkinson's Disease. The molecular mechanisms of both the physiological and pathological functions of α-synuclein remain to be fully understood, but in both cases, interactions with membranes play an important role. In this Perspective, we discuss several aspects of α-synuclein interactions with lipid membranes including cooperative adsorption, membrane remodeling and α-synuclein amyloid fibril formation in the presence of lipid membranes. We highlight the coupling between the different phenomena and their interplay in the context of physiological and pathological functions of α-synuclein.
Collapse
Affiliation(s)
- Katarzyna Makasewicz
- Division
of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Huang J, Ahmed R, Akimoto M, Martinez Pomier K, Melacini G. Early-Onset Parkinson Mutation Remodels Monomer-Fibril Interactions to Allosterically Amplify Synuclein's Amyloid Cascade. JACS AU 2023; 3:3485-3493. [PMID: 38155658 PMCID: PMC10751762 DOI: 10.1021/jacsau.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Alpha synuclein (αS) aggregates are the main component of Lewy bodies (LBs) associated with Parkinson's disease (PD). A longstanding question about αS and PD pertains to the autosomal dominant E46K αS mutant, which leads to the early onset of PD and LB dementias. The E46K mutation not only promotes αS aggregation but also stabilizes αS monomers in "closed" conformers, which are compact and aggregation-incompetent. Hence, the mechanism of action of the E46K mutation is currently unclear. Here, we show that αS monomers harboring the E46K mutation exhibit more extensive interactions with fibrils compared to those of WT. Such monomer-fibril interactions are sufficient to allosterically drive transitions of αS monomers from closed to open conformations, enabling αS aggregation. We also show that E46K promotes head-to-tail monomer-monomer interactions in early self-association events. This multipronged mechanism provides a new framework to explain how the E46K mutation and possibly other αS variants trigger early-onset PD.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rashik Ahmed
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
15
|
Whitcomb K, Warncke K. Oligomeric and Fibrillar α-Synuclein Display Persistent Dynamics and Compressibility under Controlled Confinement. ACS Chem Neurosci 2023; 14:3905-3912. [PMID: 37861459 PMCID: PMC10623556 DOI: 10.1021/acschemneuro.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The roles of α-synuclein in neurotransmitter release in brain neurons and in the Parkinson's disease condition have challenged comprehensive description. To gain insight into molecular mechanistic properties that actuate α-synuclein function and dysfunction, the coupled protein and solvent dynamics of oligomer and fibril forms of human α-synuclein are examined in a low-temperature system that allows control of confinement and localization of a motionally sensitive electron paramagnetic resonance spin probe in the coupled solvent-protein regions. The rotational mobility of the spin probe resolves two distinct α-synuclein-associated solvent components for oligomers and fibrils, as for globular proteins, but with dramatically higher fluidities at each temperature, that are comparable to low-confinement, aqueous-cryosolvent mesophases. In contrast to the temperature-independent volumes of the solvent phases that surround globular and condensate-forming proteins, the higher-fluidity mesophase volume of α-synuclein oligomers and fibrils decreases with decreasing temperature, signaling a compression of this phase. This unique property and thermal hysteresis in the mobilities and component weights, together with previous high-resolution structural characterizations, suggest a model in which the dynamically disordered C-terminal domain of α-synuclein creates a compressible phase that maintains high fluidity under confinement. Robust dynamics and compressibility are fundamental molecular mechanical properties of α-synuclein oligomers and fibrils, which may contribute to dysfunction and inform about function.
Collapse
Affiliation(s)
- Katie
Lynn Whitcomb
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Kamski-Hennekam ER, Huang J, Ahmed R, Melacini G. Toward a molecular mechanism for the interaction of ATP with alpha-synuclein. Chem Sci 2023; 14:9933-9942. [PMID: 37736631 PMCID: PMC10510630 DOI: 10.1039/d3sc03612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of Adenosine Triphosphate (ATP) to modulate protein solubility establishes a critical link between ATP homeostasis and proteinopathies, such as Parkinson's (PD). The most significant risk factor for PD is aging, and ATP levels decline dramatically with age. However, the mechanism by which ATP interacts with alpha-synuclein (αS), whose aggregation is characteristic of PD, is currently not fully understood, as is ATP's effect on αS aggregation. Here, we use nuclear magnetic resonance spectroscopy as well as fluorescence, dynamic light scattering and microscopy to show that ATP affects multiple species in the αS self-association cascade. The triphosphate moiety of ATP disrupts long-range electrostatic intramolecular contacts in αS monomers to enhance initial aggregation, while also inhibiting the formation of late-stage β-sheet fibrils by disrupting monomer-fibril interactions. These effects are modulated by magnesium ions and early onset PD-related αS mutations, suggesting that loss of the ATP hydrotropic function on αS fibrillization may play a role in PD etiology.
Collapse
Affiliation(s)
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
17
|
Oliyantakath Hassan MS, Abdul Vahid A, Sahayaraj AE, Viswanathan R, Vijayan V. NMR Relaxation Experiments Probe Monomer-Fibril Interaction and Identify Critical Interacting Residues Responsible for Distinct Tau Fibril Morphologies. J Phys Chem Lett 2023; 14:6583-6591. [PMID: 37458827 DOI: 10.1021/acs.jpclett.3c00912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Tau aggregation is governed by secondary processes, a major pathological pathway for tau protein fibril propagation, yet its molecular mechanism remains unknown. This work uses saturation transfer and lifetime line-broadening experiments to identify the critical residues involved in these secondary processes. Distinct residue-specific NMR relaxation parameters were obtained for the truncated three repeat tau construct (K19) in equilibrium with structurally different, self-aggregated (saK19) or heparin-induced (hK19) fibrils. The interacting residues are restricted to R3 repeat for hK19 and to R3, R4, and R' repeats for saK19 fibrils. Furthermore, the relaxation profiles of tau monomers in equilibrium with the structurally comparable, in vitro pathological fibrils (tauAD and tauCTE) were similar but distinct from hK19 or saK19 fibrils. Thus, residue-specific relaxation identifies the important residues involved in the binding of monomers to the fibrils. The relaxation profile of the monomers in equilibrium with the NMR invisible fibril seeds potentially distinguishes the distinct structures of tau fibrils.
Collapse
Affiliation(s)
| | - Arshad Abdul Vahid
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Allwin Ebenezer Sahayaraj
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Renjith Viswanathan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
18
|
Pan B, Gardner SM, Schultz K, Perez RM, Deng S, Shimogawa M, Sato K, Rhoades E, Marmorstein R, Petersson EJ. Semi-Synthetic CoA-α-Synuclein Constructs Trap N-Terminal Acetyltransferase NatB for Binding Mechanism Studies. J Am Chem Soc 2023; 145:14019-14030. [PMID: 37319422 PMCID: PMC10728591 DOI: 10.1021/jacs.3c03887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.
Collapse
Affiliation(s)
- Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sarah M. Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kollin Schultz
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryann M. Perez
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Sunbin Deng
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Kohei Sato
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Pálmadóttir T, Waudby CA, Bernfur K, Christodoulou J, Linse S, Malmendal A. Morphology-Dependent Interactions between α-Synuclein Monomers and Fibrils. Int J Mol Sci 2023; 24:5191. [PMID: 36982264 PMCID: PMC10049171 DOI: 10.3390/ijms24065191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Amyloid fibrils may adopt different morphologies depending on the solution conditions and the protein sequence. Here, we show that two chemically identical but morphologically distinct α-synuclein fibrils can form under identical conditions. This was observed by nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence spectroscopy, as well as by cryo-transmission electron microscopy (cryo-TEM). The results show different surface properties of the two morphologies, A and B. NMR measurements show that monomers interact differently with the different fibril surfaces. Only a small part of the N-terminus of the monomer interacts with the fibril surface of morphology A, compared to a larger part of the monomer for morphology B. Differences in ThT binding seen by fluorescence titrations, and mesoscopic structures seen by cryo-TEM, support the conclusion of the two morphologies having different surface properties. Fibrils of morphology B were found to have lower solubility than A. This indicates that fibrils of morphology B are thermodynamically more stable, implying a chemical potential of fibrils of morphology B that is lower than that of morphology A. Consequently, at prolonged incubation time, fibrils of morphology B remained B, while an initially monomorphic sample of morphology A gradually transformed to B.
Collapse
Affiliation(s)
- Tinna Pálmadóttir
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology, University College and Birkbeck College, London WC1E 7HX, UK; (C.A.W.); (J.C.)
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College and Birkbeck College, London WC1E 7HX, UK; (C.A.W.); (J.C.)
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - Anders Malmendal
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
- Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
20
|
Bopardikar M, Koti Ainavarapu SR, Hosur RV. Pyrogallol, Corilagin and Chebulagic acid target the "fuzzy coat" of alpha-synuclein to inhibit the fibrillization of the protein. RSC Adv 2022; 12:35770-35777. [PMID: 36545068 PMCID: PMC9749937 DOI: 10.1039/d2ra04358k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The accumulation of the intrinsically disordered protein alpha-synuclein (αSyn) in the form of insoluble fibrillar aggregates in the central nervous system is linked to a variety of neurodegenerative disorders such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. Here we show that Pyrogallol, Corilagin and Chebulagic acid, compounds containing a different number of catechol rings, are independently capable of delaying and reducing the extent of αSyn fibrillization. The efficiency of inhibition was found to correlate with the number of catechol rings. Further, our NMR studies reveal that these compounds interact with the N-terminal region of αSyn which is unstructured even in the fibrillar form of the protein and is known as the "fuzzy coat" of fibrils. Thus, Corilagin and Chebulagic acid target the fuzzy coat of αSyn and not the amyloid core which is a common target for the inhibition of protein fibrillization. Our results indicate that the N-terminus also plays a key role in the fibrillization of αSyn.
Collapse
Affiliation(s)
- Mandar Bopardikar
- Department of Chemical Sciences, Tata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai 400005India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai 400005India
| | - Ramakrishna V. Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina CampusSantacruzMumbai 400098India
| |
Collapse
|
21
|
Iyer A, Sidhu A, Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front Neurosci 2022; 16:1003997. [PMID: 36466161 PMCID: PMC9709446 DOI: 10.3389/fnins.2022.1003997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
N-α-acetylation is a frequently occurring post-translational modification in eukaryotic proteins. It has manifold physiological consequences on the regulation and function of several proteins, with emerging studies suggesting that it is a global regulator of stress responses. For decades, in vitro biochemical investigations into the precise role of the intrinsically disordered protein alpha-synuclein (αS) in the etiology of Parkinson's disease (PD) were performed using non-acetylated αS. The N-terminus of α-synuclein is now unequivocally known to be acetylated in vivo, however, there are many aspects of this post-translational modifications that are not understood well. Is N-α-acetylation of αS a constitutive modification akin to most cellular proteins, or is it spatio-temporally regulated? Is N-α-acetylation of αS relevant to the as yet elusive function of αS? How does the N-α-acetylation of αS influence the aggregation of αS into amyloids? Here, we provide an overview of the current knowledge and discuss prevailing hypotheses on the impact of N-α-acetylation of αS on its conformational, oligomeric, and fibrillar states. The extent to which N-α-acetylation of αS is vital for its function, membrane binding, and aggregation into amyloids is also explored here. We further discuss the overall significance of N-α-acetylation of αS for its functional and pathogenic implications in Lewy body formation and synucleinopathies.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arshdeep Sidhu
- Nitte University Centre for Science Education and Research, Nitte University (DU), Mangalore, India
| | | |
Collapse
|
22
|
Bell R, Thrush RJ, Castellana-Cruz M, Oeller M, Staats R, Nene A, Flagmeier P, Xu CK, Satapathy S, Galvagnion C, Wilson MR, Dobson CM, Kumita JR, Vendruscolo M. N-Terminal Acetylation of α-Synuclein Slows down Its Aggregation Process and Alters the Morphology of the Resulting Aggregates. Biochemistry 2022; 61:1743-1756. [PMID: 35944093 PMCID: PMC9454101 DOI: 10.1021/acs.biochem.2c00104] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/09/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower β-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.
Collapse
Affiliation(s)
- Rosie Bell
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rebecca J. Thrush
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marta Castellana-Cruz
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Oeller
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Roxine Staats
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Aishwarya Nene
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Patrick Flagmeier
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Catherine K. Xu
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sandeep Satapathy
- Department
of Cell Biology, Blavantik Institute, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Celine Galvagnion
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Mark R. Wilson
- School
of Chemistry and Molecular Bioscience, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher M. Dobson
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Janet R. Kumita
- Department
of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.
| | - Michele Vendruscolo
- Centre for
Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
23
|
Zhang C, Pei Y, Zhang Z, Xu L, Liu X, Jiang L, Pielak GJ, Zhou X, Liu M, Li C. C-terminal truncation modulates α-Synuclein's cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Commun Biol 2022; 5:798. [PMID: 35945337 PMCID: PMC9363494 DOI: 10.1038/s42003-022-03768-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022] Open
Abstract
α-Synuclein (α-syn) is the main protein component of Lewy bodies, the major pathological hallmarks of Parkinson's disease (PD). C-terminally truncated α-syn is found in the brain of PD patients, reduces cell viability and tends to form fibrils. Nevertheless, little is known about the mechanisms underlying the role of C-terminal truncation on the cytotoxicity and aggregation of α-syn. Here, we use nuclear magnetic resonance spectroscopy to show that the truncation alters α-syn conformation, resulting in an attractive interaction of the N-terminus with membranes and molecular chaperone, protein disulfide isomerase (PDI). The truncated protein is more toxic to mitochondria than full-length protein and diminishes the effect of PDI on α-syn fibrillation. Our findings reveal a modulatory role for the C-terminus in the cytotoxicity and aggregation of α-syn by interfering with the N-terminus binding to membranes and chaperone, and provide a molecular basis for the pathological role of C-terminal truncation in PD pathogenesis.
Collapse
Affiliation(s)
- Cai Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Yunshan Pei
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| | - Lingling Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Gary J Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- Graduate University of Chinese Academy of Science, 100049, Beijing, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- Graduate University of Chinese Academy of Science, 100049, Beijing, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430071, Wuhan, China.
| |
Collapse
|
24
|
Thrush RJ, Vadukul DM, Aprile FA. A Facile Method to Produce N-Terminally Truncated α-Synuclein. Front Neurosci 2022; 16:881480. [PMID: 35692420 PMCID: PMC9184721 DOI: 10.3389/fnins.2022.881480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
α-Synuclein is a key protein of the nervous system, which regulates the release and recycling of neurotransmitters in the synapses. It is also involved in several neurodegenerative conditions, including Parkinson's disease and Multiple System Atrophy, where it forms toxic aggregates. The N-terminus of α-synuclein is of particular interest as it has been linked to both the physiological and pathological functions of the protein and undergoes post-translational modification. One such modification, N-terminal truncation, affects the aggregation propensity of the protein in vitro and is also found in aggregates from patients' brains. To date, our understanding of the role of this modification has been limited by the many challenges of introducing biologically relevant N-terminal truncations with no overhanging starting methionine. Here, we present a method to produce N-terminally truncated variants of α-synuclein that do not carry extra terminal residues. We show that our method can generate highly pure protein to facilitate the study of this modification and its role in physiology and disease. Thanks to this method, we have determined that the first six residues of α-synuclein play an important role in the formation of the amyloids.
Collapse
Affiliation(s)
- Rebecca J. Thrush
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom,Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Devkee M. Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Francesco A. Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom,Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom,*Correspondence: Francesco A. Aprile,
| |
Collapse
|
25
|
Vidović M, Rikalovic MG. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells 2022; 11:cells11111732. [PMID: 35681426 PMCID: PMC9179656 DOI: 10.3390/cells11111732] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Following Alzheimer’s, Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, sharing an unclear pathophysiology, a multifactorial profile, and massive social costs worldwide. Despite this, no disease-modifying therapy is available. PD is tightly associated with α-synuclein (α-Syn) deposits, which become organised into insoluble, amyloid fibrils. As a typical intrinsically disordered protein, α-Syn adopts a monomeric, random coil conformation in an aqueous solution, while its interaction with lipid membranes drives the transition of the molecule part into an α-helical structure. The central unstructured region of α-Syn is involved in fibril formation by converting to well-defined, β-sheet rich secondary structures. Presently, most therapeutic strategies against PD are focused on designing small molecules, peptides, and peptidomimetics that can directly target α-Syn and its aggregation pathway. Other approaches include gene silencing, cell transplantation, stimulation of intracellular clearance with autophagy promoters, and degradation pathways based on immunotherapy of amyloid fibrils. In the present review, we sum marise the current advances related to α-Syn aggregation/neurotoxicity. These findings present a valuable arsenal for the further development of efficient, nontoxic, and non-invasive therapeutic protocols for disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
- Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: ; Tel.: +38-16-4276-3221
| | - Milena G. Rikalovic
- Environment and Sustainable Development, Singidunum Univeristy, Danijelova 32, 11010 Belgrade, Serbia;
| |
Collapse
|
26
|
Min JO, Strohäker T, Jeong BC, Zweckstetter M, Lee SJ. Chicago sky blue 6B inhibits α-synuclein aggregation and propagation. Mol Brain 2022; 15:27. [PMID: 35346306 PMCID: PMC8962151 DOI: 10.1186/s13041-022-00913-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abnormal deposition of α-synuclein aggregates in Lewy bodies and Lewy neurites is the hallmark lesion in Parkinson’s disease (PD). These aggregates, thought to be the culprit of disease pathogenesis, spread throughout the brain as the disease progresses. Agents that inhibit α-synuclein aggregation and/or spread of aggregates would thus be candidate disease-modifying drugs. Here, we found that Chicago sky blue 6B (CSB) may be such a drug, showing that it inhibits α-synuclein aggregation and cell-to-cell propagation in both in vitro and in vivo models of synucleinopathy. CSB inhibited the fibrillation of α-synuclein in a concentration-dependent manner through direct binding to the N-terminus of α-synuclein. Furthermore, both seeded polymerization and cell-to-cell propagation of α-synuclein were inhibited by CSB treatment. Notably, CSB alleviated behavioral deficits and neuropathological features, such as phospho-α-synuclein and astrogliosis, in A53T α-synuclein transgenic mice. These results indicate that CSB directly binds α-synuclein and inhibits its aggregation, thereby blocking α-synuclein cell-to-cell propagation.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Byung-Chul Jeong
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.,Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
27
|
Atieh TB, Roth J, Yang X, Hoop CL, Baum J. DJ-1 Acts as a Scavenger of α-Synuclein Oligomers and Restores Monomeric Glycated α-Synuclein. Biomolecules 2021; 11:biom11101466. [PMID: 34680099 PMCID: PMC8533443 DOI: 10.3390/biom11101466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson’s disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer–oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.
Collapse
|
28
|
Mehra S, Gadhe L, Bera R, Sawner AS, Maji SK. Structural and Functional Insights into α-Synuclein Fibril Polymorphism. Biomolecules 2021; 11:1419. [PMID: 34680054 PMCID: PMC8533119 DOI: 10.3390/biom11101419] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal accumulation of aggregated α-synuclein (α-Syn) is seen in a variety of neurodegenerative diseases, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), Parkinson's disease dementia (PDD), and even subsets of Alzheimer's disease (AD) showing Lewy-body-like pathology. These synucleinopathies exhibit differences in their clinical and pathological representations, reminiscent of prion disorders. Emerging evidence suggests that α-Syn self-assembles and polymerizes into conformationally diverse polymorphs in vitro and in vivo, similar to prions. These α-Syn polymorphs arising from the same precursor protein may exhibit strain-specific biochemical properties and the ability to induce distinct pathological phenotypes upon their inoculation in animal models. In this review, we discuss clinical and pathological variability in synucleinopathies and several aspects of α-Syn fibril polymorphism, including the existence of high-resolution molecular structures and brain-derived strains. The current review sheds light on the recent advances in delineating the structure-pathogenic relationship of α-Syn and how diverse α-Syn molecular polymorphs contribute to the existing clinical heterogeneity in synucleinopathies.
Collapse
Affiliation(s)
- Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (L.G.); (R.B.); (A.S.S.)
| | | | | | | | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (L.G.); (R.B.); (A.S.S.)
| |
Collapse
|
29
|
Oliyantakath Hassan MS, Somasundaran SM, Abdul Shukkoor MB, Ayyappan S, Abdul Vahid A, Vijayan V. Examining the Transient Dark State in Protein-Quantum Dot Interaction by Relaxation-Based Solution NMR. J Phys Chem B 2021; 125:10119-10125. [PMID: 34473517 DOI: 10.1021/acs.jpcb.1c04853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We probed the "dark" state involved in the protein-quantum dot (QD) interaction using a relaxation-based solution nuclear magnetic resonance (NMR) approach. We examined the dynamics and exchange kinetics of the ubiquitin-CdTe model system, which undergoes a fast exchange in the transverse relaxation time scale. We applied the recently developed dark-state exchange saturation transfer (DEST), lifetime line broadening (ΔR2), and exchange-induced chemical shift (δex) solution NMR techniques to obtain a residue-specific binding behavior of the protein on the QD surface. The variation in the estimated 15N-R2bound values clearly shows the dynamic nature of bound Ub. Upon mapping the amino acid residues showing a faster relaxation rate on the electrostatic potential surface of the protein, we have determined that the interaction is preferably electrostatic, and the amino acid residues involved in binding lie on the positively charged surface of the protein. We believe that our experimental approach should provide more in-depth knowledge to engineer new hybrid protein-QD systems in the future.
Collapse
Affiliation(s)
| | - Sanoop Mambully Somasundaran
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| | | | - Shine Ayyappan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Arshad Abdul Vahid
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, IISER-Thiruvananthapuram, Maruthamala P.O, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
30
|
Abramov-Harpaz K, Pollock-Gagolashvili M, Miller Y. Insights into the Mechanistic Perspective Effect of Insulin on the Nonamyloidogenic Component (NAC) and α-Synuclein Aggregation. ACS Chem Neurosci 2021; 12:3266-3276. [PMID: 34406742 DOI: 10.1021/acschemneuro.1c00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin plays important functions in the brain, such as neuroprotective effects on neurons, and it is also involved in cognitive functions (e.g., attention, learning and memory). It is proposed that a lack of insulin in the brain may initiate development of neurodegenerative diseases. Herein, we examined the effect of insulin on aggregates of α-synuclein (AS), a protein that is related to Parkinson's disease (PD), and its segment nonamyloidogenic component (NAC), which is known to play a crucial role in AS aggregation. The molecular modeling tools assist us to provide insights into the molecular mechanism of the effect of insulin on fibrillation of NAC and AS. Our research leads to three conclusions. First, the preferred interactions between insulin chain B and the "zipper domain" sequence within both NAC and AS appear at the central domain across the fibril axis or at the edge of the fibril. Second, these interactions do not disrupt the cross-β structure of NAC fibril-like oligomers but disrupt the cross-β structure of AS fibril-like oligomers. Thus, insulin does not inhibit the fibrillation of NAC but may inhibit AS fibrillation. Third, some of the polymorphic NAC and AS fibril-like oligomers bind to chain A in insulin. This is the first study that demonstrates that insulin chain A can also participate in the interactions with amyloid fibril-like oligomers. Our study proposes that insulin plays a crucial role in impeding AS aggregation in the brain and consequently could inhibit the development of PD.
Collapse
Affiliation(s)
- Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva84105, Israel
| | - Maya Pollock-Gagolashvili
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva84105, Israel
| |
Collapse
|
31
|
McGlinchey RP, Ni X, Shadish JA, Jiang J, Lee JC. The N terminus of α-synuclein dictates fibril formation. Proc Natl Acad Sci U S A 2021; 118:e2023487118. [PMID: 34452994 PMCID: PMC8536336 DOI: 10.1073/pnas.2023487118] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
The generation of α-synuclein (α-syn) truncations from incomplete proteolysis plays a significant role in the pathogenesis of Parkinson's disease. It is well established that C-terminal truncations exhibit accelerated aggregation and serve as potent seeds in fibril propagation. In contrast, mechanistic understanding of N-terminal truncations remains ill defined. Previously, we found that disease-related C-terminal truncations resulted in increased fibrillar twist, accompanied by modest conformational changes in a more compact core, suggesting that the N-terminal region could be dictating fibril structure. Here, we examined three N-terminal truncations, in which deletions of 13-, 35-, and 40-residues in the N terminus modulated both aggregation kinetics and fibril morphologies. Cross-seeding experiments showed that out of the three variants, only ΔN13-α-syn (14‒140) fibrils were capable of accelerating full-length fibril formation, albeit slower than self-seeding. Interestingly, the reversed cross-seeding reactions with full-length seeds efficiently promoted all but ΔN40-α-syn (41-140). This behavior can be explained by the unique fibril structure that is adopted by 41-140 with two asymmetric protofilaments, which was determined by cryogenic electron microscopy. One protofilament resembles the previously characterized bent β-arch kernel, comprised of residues E46‒K96, whereas in the other protofilament, fewer residues (E61‒D98) are found, adopting an extended β-hairpin conformation that does not resemble other reported structures. An interfilament interface exists between residues K60‒F94 and Q62‒I88 with an intermolecular salt bridge between K80 and E83. Together, these results demonstrate a vital role for the N-terminal residues in α-syn fibril formation and structure, offering insights into the interplay of α-syn and its truncations.
Collapse
Affiliation(s)
- Ryan P McGlinchey
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Jared A Shadish
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892;
| |
Collapse
|