1
|
Chotewutmontri P, Barkan A. Localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus to thylakoid subdomains in Arabidopsis. PLANT DIRECT 2024; 8:e70008. [PMID: 39544483 PMCID: PMC11560805 DOI: 10.1002/pld3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
Thylakoid membranes in chloroplasts and cyanobacteria harbor the multisubunit protein complexes that catalyze the light reactions of photosynthesis. In plant chloroplasts, the thylakoid membrane system comprises a highly organized network with several subcompartments that differ in composition and morphology: grana stacks, unstacked stromal lamellae, and grana margins at the interface between stacked and unstacked regions. The localization of components of the photosynthetic apparatus among these subcompartments has been well characterized. However, less is known about the localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus, the partitioning of proteins between two recently resolved components of the traditional margin fraction (refined margins and curvature), and the effects of light on these features. In this study, we analyzed the partitioning of numerous thylakoid biogenesis and repair factors among grana, curvature, refined margin, and stromal lamellae fractions of Arabidopsis thylakoid membranes, comparing the results from illuminated and dark-adapted plants. Several proteins previously shown to localize to a margin fraction partitioned in varying ways among the resolved curvature and refined margin fractions. For example, the ALB3 insertase and FtsH protease involved in photosystem II (PSII) repair were concentrated in the refined margin fraction, whereas TAT translocon subunits and proteins involved in early steps in photosystem assembly were concentrated in the curvature fraction. By contrast, two photosystem assembly factors that facilitate late assembly steps were depleted from the curvature fraction. The enrichment of the PSII subunit OE23/PsbP in the curvature fraction set it apart from other PSII subunits, supporting the previous conjecture that OE23/PsbP assists in PSII biogenesis and/or repair. The PSII assembly factor PAM68 partitioned differently among thylakoid fractions from dark-adapted plants and illuminated plants and was the only analyzed protein to convincingly do so. These results demonstrate an unanticipated spatial heterogeneity of photosystem biogenesis and repair functions in thylakoid membranes and reveal the curvature fraction to be a focal point of early photosystem biogenesis.
Collapse
Affiliation(s)
- Prakitchai Chotewutmontri
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Present address:
Crop Improvement and Genetics Research, Western Regional Research CenterUnited States Department of Agriculture—Agricultural Research ServiceAlbanyCaliforniaUSA
| | - Alice Barkan
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
| |
Collapse
|
2
|
Hao B, Zhou W, Theg SM. The polar amino acid in the TatA transmembrane helix is not strictly necessary for protein function. J Biol Chem 2023; 299:102998. [PMID: 36764519 PMCID: PMC10124905 DOI: 10.1016/j.jbc.2023.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The twin-arginine translocation (Tat) pathway utilizes the proton-motive force (pmf) to transport folded proteins across cytoplasmic membranes in bacteria and archaea, as well as across the thylakoid membrane in plants and the inner membrane in mitochondria. In most species, the minimal components required for Tat activity consist of three subunits, TatA, TatB, and TatC. Previous studies have shown that a polar amino acid is present at the N-terminus of the TatA transmembrane helix (TMH) across many different species. In order to systematically assess the functional importance of this polar amino acid in the TatA TMH in Escherichia coli, we examined a complete set of 19-amino-acid substitutions. Unexpectedly, although being preferred overall, our experiments suggest that the polar amino acid is not necessary for a functional TatA. Hydrophilicity and helix-stabilizing properties of this polar amino acid were found to be highly correlated with the Tat activity. Specifically, change in charge status of the amino acid side chain due to pH resulted in a shift in hydrophilicity, which was demonstrated to impact the Tat transport activity. Furthermore, we identified a four-residue motif at the N-terminus of the TatA TMH by sequence alignment. Using a biochemical approach, we found that the N-terminal motif was functionally significant, with evidence indicating a potential role in the preference for utilizing different pmf components. Taken together, these findings yield new insights into the functionality of TatA and its potential role in the Tat transport mechanism.
Collapse
Affiliation(s)
- Binhan Hao
- Plant Biology Department, University of California, Davis, California, USA
| | - Wenjie Zhou
- Plant Biology Department, University of California, Davis, California, USA
| | - Steven M Theg
- Plant Biology Department, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Liu H, Zong X, Wang Y, Yin X, Liu M, Liu S, Zhu G, Fang S. One-Pot Biosynthesis of l-Aspartate from Maleic Anhydride via a Thermostable Dual-Enzyme System under High Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14247-14254. [PMID: 36302508 DOI: 10.1021/acs.jafc.2c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Aspartate is an important chemical in the food and pharmaceutical industries. Herein, a dual-enzyme system was constructed to synthesize l-aspartate from maleic anhydride at 50 °C, which can reduce the byproduct production. Maleate transformed from maleic anhydride in the solution was converted into l-aspartate via fumarate catalyzed by maleate isomerase (MaiA) and thermostable aspartase (AspB), respectively. Because MaiA is a rate-limiting enzyme, enzyme activities of various MaiAs were compared, and the efficient and thermostable maleate isomerase AaMaiA from Alicyclobacillus acidoterrestris was chosen. The Kcat/Km value of AaMaiA was 264.4 mM-1 min-1. AaMaiA and AspB were coexpressed in E. coli to produce l-aspartate. To improve the l-aspartate production rate, the ribosome binding site (RBS) sequence located upstream of AaMaiA was optimized and the Tat signal peptide was fused with AaMaiA. The conversion rate was 96% within 60 min, and the intermediate was not detected, the possible reason of which is that high temperature inhibits the activity of bacterial endogenous enzymes, but functional enzymes remain active. Cells from fermentation produced 243.6 g/L (1.83 M) of l-aspartate with a 2 M substrate. Our study revealed an effective method to produce l-aspartate without using gene knockout and provided a strategy for l-aspartate production in the industrial field.
Collapse
Affiliation(s)
- Hongming Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Xuan Zong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yuanxiu Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Xiaye Yin
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Mengna Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Shiyan Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, PR China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Shangping Fang
- School of Anesthesiology, Wannan Medical College, Wuhu, Anhui 241002, PR China
| |
Collapse
|
4
|
Brüser T, Mehner-Breitfeld D. Occurrence and potential mechanism of holin-mediated non-lytic protein translocation in bacteria. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:159-173. [PMID: 36262927 PMCID: PMC9527704 DOI: 10.15698/mic2022.10.785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022]
Abstract
Holins are generally believed to generate large membrane lesions that permit the passage of endolysins across the cytoplasmic membrane of prokaryotes, ultimately resulting in cell wall degradation and cell lysis. However, there are more and more examples known for non-lytic holin-dependent secretion of proteins by bacteria, indicating that holins somehow can transport proteins without causing large membrane lesions. Phage-derived holins can be used for a non-lytic endolysin translocation to permeabilize the cell wall for the passage of secreted proteins. In addition, clostridia, which do not possess the Tat pathway for transport of folded proteins, most likely employ non-lytic holin-mediated transport also for secretion of toxins and bacteriocins that are incompatible with the general Sec pathway. The mechanism for non-lytic holin-mediated transport is unknown, but the recent finding that the small holin TpeE mediates a non-lytic toxin secretion in Clostridium perfringens opened new perspectives. TpeE contains only one short transmembrane helix that is followed by an amphipathic helix, which is reminiscent of TatA, the membrane-permeabilizing component of the Tat translocon for folded proteins. Here we review the known cases of non-lytic holin-mediated transport and then focus on the structural and functional comparison of TatA and TpeE, resulting in a mechanistic model for holin-mediated transport. This model is strongly supported by a so far not recognized naturally occurring holin-endolysin fusion protein.
Collapse
Affiliation(s)
- Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | |
Collapse
|
5
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
7
|
Hao B, Zhou W, Theg SM. Hydrophobic mismatch is a key factor in protein transport across lipid bilayer membranes via the Tat pathway. J Biol Chem 2022; 298:101991. [PMID: 35490783 PMCID: PMC9207671 DOI: 10.1016/j.jbc.2022.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across membranes in bacteria, thylakoids, plant mitochondria, and archaea. In most species, the active Tat machinery consists of three independent subunits: TatA, TatB, and TatC. TatA and TatB possess short transmembrane alpha helices (TMHs), both of which are only 15 residues long in Escherichia coli. Such short TMHs cause a hydrophobic mismatch between Tat subunits and the membrane bilayer, although the functional significance of this mismatch is unclear. Here, we sought to address the functional importance of the hydrophobic mismatch in the Tat transport mechanism in E. coli. We conducted three different assays to evaluate the effect of TMH length mutants on Tat activity and observed that the TMHs of TatA and TatB appear to be evolutionarily tuned to 15 amino acids, with activity dropping off following any modification of this length. Surprisingly, TatA and TatB with as few as 11 residues in their TMHs can still insert into the membrane bilayer, albeit with a decline in membrane integrity. These findings support a model of Tat transport utilizing localized toroidal pores that form when the membrane bilayer is thinned to a critical threshold. In this context, we conclude that the 15-residue length of the TatA and TatB TMHs can be seen as a compromise between the need for some hydrophobic mismatch to allow the membrane to reversibly reach the threshold thinness required for toroidal pore formation and the permanently destabilizing effect of placing even shorter helices into these energy-transducing membranes.
Collapse
Affiliation(s)
- Binhan Hao
- Plant Biology Department, University of California, Davis, CA 95616
| | - Wenjie Zhou
- Plant Biology Department, University of California, Davis, CA 95616
| | - Steven M Theg
- Plant Biology Department, University of California, Davis, CA 95616.
| |
Collapse
|