1
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F, Chaveroux C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J 2024; 291:4867-4889. [PMID: 38879870 DOI: 10.1111/febs.17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 11/14/2024]
Abstract
Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.
Collapse
Affiliation(s)
- Marie Piecyk
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, University Lyon I, Oullins, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, Plateforme AURAGEN, France
| | - David Laville
- Department of Pathology, Hospices Civils de Lyon, East Hospital Group, Bron, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, University of Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
2
|
Chen C, Xie Y, Qian S. Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl Oncol 2024; 49:102096. [PMID: 39178574 PMCID: PMC11388189 DOI: 10.1016/j.tranon.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Tumor cells voraciously consume nutrients from their environment to facilitate rapid proliferation, necessitating effective strategies to manage nutrient scarcity during tumor growth and progression. A pivotal regulatory mechanism in this context is the Integrated Stress Response (ISR), which ensures cellular homeostasis under conditions such as endoplasmic reticulum stress, the unfolded protein response, and nutrient deprivation. Within the ISR framework, the kinase GCN2 is critical, orchestrating a myriad of cellular processes including the inhibition of protein synthesis, the enhancement of amino acid transport, autophagy initiation, and angiogenesis. These processes collectively enable tumor survival and adaptation under nutrient-limited conditions. Furthermore, GCN2-mediated pathways may induce apoptosis, a property exploited by specific therapeutic agents. Leveraging extensive datasets from TCGA, GEO, and GTEx projects, we conducted a pan-cancer analysis to investigate the prognostic significance of GCN2 expression across diverse cancer types. Our analysis indicates that GCN2 expression significantly varies and correlates with both adverse and favorable prognoses depending on the type of cancer, illustrating its complex role in tumorigenesis. Importantly, GCN2 also modulates the tumor immune microenvironment, influencing immune checkpoint expression and the functionality of immune cells, thereby affecting immunotherapy outcomes. This study highlights the potential of targeting GCN2 with specific inhibitors, as evidenced by their efficacy in preclinical models to augment treatment responses and combat resistance in oncology. These findings advocate for a deeper exploration of GCN2's multifaceted roles, which could pave the way for novel targeted therapies in cancer treatment, aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Powell RT, Rinkenbaugh AL, Guo L, Cai S, Shao J, Zhou X, Zhang X, Jeter-Jones S, Fu C, Qi Y, Baameur Hancock F, White JB, Stephan C, Davies PJ, Moulder S, Symmans WF, Chang JT, Piwnica-Worms H. Targeting neddylation and sumoylation in chemoresistant triple negative breast cancer. NPJ Breast Cancer 2024; 10:37. [PMID: 38802426 PMCID: PMC11130334 DOI: 10.1038/s41523-024-00644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before and after patients received NACT. We then compiled transcriptomes and drug response profiles for all models. Transcriptomic analysis identified the enrichment of aberrant protein homeostasis pathways in models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor, was prioritized for validation in vivo and demonstrated efficacy as a single agent in multiple PDX models of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between pevonedistat activity and post-translational modification (PTM) machinery, particularly involving neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in models exhibiting a favorable response to pevonedistat compared to those with a less favorable response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may prove effective in combating chemoresistant TNBC.
Collapse
Affiliation(s)
- Reid T Powell
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Amanda L Rinkenbaugh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Guo
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiansu Shao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhui Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaomei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabrina Jeter-Jones
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunxiao Fu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Qi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faiza Baameur Hancock
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Peter J Davies
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - W Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Johnson KK, Koshy P, Kopecky C, Devadason M, Biazik J, Zheng X, Jiang Y, Wang X, Liu Y, Holst J, Yang JL, Kilian KA, Sorrell CC. ROS-mediated anticancer effects of EGFR-targeted nanoceria. J Biomed Mater Res A 2024; 112:754-769. [PMID: 38084898 DOI: 10.1002/jbm.a.37656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 03/20/2024]
Abstract
The therapeutic effectiveness of anticancer drugs, including nanomedicines, can be enhanced with active receptor-targeting strategies. Epidermal growth factor receptor (EGFR) is an important cancer biomarker, constitutively expressed in sarcoma patients of different histological types. The present work reports materials and in vitro biomedical analyses of silanized (passive delivery) and/or EGF-functionalized (active delivery) ceria nanorods exhibiting highly defective catalytically active surfaces. The EGFR-targeting efficiency of nanoceria was confirmed by receptor-binding studies. Increased cytotoxicity and reactive oxygen species (ROS) production were observed for EGF-functionalized nanoceria owing to enhanced cellular uptake by HT-1080 fibrosarcoma cells. The uptake was confirmed by TEM and confocal microscopy. Silanized nanoceria demonstrated negligible/minimal cytotoxicity toward healthy MRC-5 cells at 24 and 48 h, whereas this was significant at 72 h owing to a nanoceria accumulation effect. In contrast, considerable cytotoxicity toward the cancer cells was exhibited at all three times points. The ROS generation and associated cytotoxicity were moderated by the equilibrium between catalysis by ceria, generation of cell debris, and blockage of active sites. EGFR-targeting is shown to enhance the uptake levels of nanoceria by cancer cells, subsequently enhancing the overall anticancer activity and therapeutic performance of ceria.
Collapse
Affiliation(s)
- Kochurani K Johnson
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chantal Kopecky
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Devadason
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xiaoran Zheng
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xiaochun Wang
- Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yiling Liu
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, School of Chemistry, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Zhou X, He R, Hu WX, Luo S, Hu J. Targeting myeloma metabolism: How abnormal metabolism contributes to multiple myeloma progression and resistance to proteasome inhibitors. Neoplasia 2024; 50:100974. [PMID: 38364355 PMCID: PMC10881428 DOI: 10.1016/j.neo.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Multiple myeloma is a hematological malignancy that has evolved from antibody-secreting B lymphocytes. Like other types of cancers, myeloma cells have acquired functional capabilities which are referred to as "Hallmarks of Cancer", and one of their most important features is the metabolic disorders. Due to the high secretory load of the MM cells, the first-line medicine proteasome inhibitors have found their pronounced effects in MM cells for blocking the degradation of misfolded proteins, leading to their accumulation in the ER and overwhelming ER stress. Moreover, proteasome inhibitors have been reported to be effective in myeloma by targeting glucose, lipid, amino acid metabolism of MM cells. In this review, we have described the abnormal metabolism of the three major nutrients, such as glucose, lipid and amino acids, which participate in the cellular functions. We have described their roles in myeloma progression, how they could be exploited for therapeutic purposes, and current therapeutic strategies targeting these metabolites, hoping to uncover potential novel therapeutic targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Xiang Zhou
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Rui He
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Saiqun Luo
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| | - Jingping Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| |
Collapse
|
6
|
Matveeva A, Watters O, Rukhadze A, Khemka N, Gentile D, Perez IF, Llorente-Folch I, Farrell C, Lo Cacciato E, Jackson J, Piazzesi A, Wischhof L, Woods I, Halang L, Hogg M, Muñoz AG, Dillon ET, Matallanas D, Arijs I, Lambrechts D, Bano D, Connolly NMC, Prehn JHM. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:135-149. [PMID: 37779364 DOI: 10.1080/21678421.2023.2261979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Ani Rukhadze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niraj Khemka
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivan Fernandez Perez
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Cliona Farrell
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Woods
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marion Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Amaya Garcia Muñoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niamh M C Connolly
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
7
|
Liu Z, Peach RL, Laumann F, Vallejo Mengod S, Barahona M. Kernel-based joint independence tests for multivariate stationary and non-stationary time series. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230857. [PMID: 38034126 PMCID: PMC10685129 DOI: 10.1098/rsos.230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Multivariate time-series data that capture the temporal evolution of interconnected systems are ubiquitous in diverse areas. Understanding the complex relationships and potential dependencies among co-observed variables is crucial for the accurate statistical modelling and analysis of such systems. Here, we introduce kernel-based statistical tests of joint independence in multivariate time series by extending the d-variable Hilbert-Schmidt independence criterion to encompass both stationary and non-stationary processes, thus allowing broader real-world applications. By leveraging resampling techniques tailored for both single- and multiple-realization time series, we show how the method robustly uncovers significant higher-order dependencies in synthetic examples, including frequency mixing data and logic gates, as well as real-world climate, neuroscience and socio-economic data. Our method adds to the mathematical toolbox for the analysis of multivariate time series and can aid in uncovering high-order interactions in data.
Collapse
Affiliation(s)
- Zhaolu Liu
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Robert L. Peach
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Neurology, University Hospital Würzburg, Würzburg 97070, Germany
| | - Felix Laumann
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | | | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Takahashi M, Okamoto Y, Kato Y, Shirahama H, Tsukahara S, Sugimoto Y, Tomida A. Activating mutations in EGFR and PI3K promote ATF4 induction for NSCLC cell survival during amino acid deprivation. Heliyon 2023; 9:e14799. [PMID: 37025861 PMCID: PMC10070656 DOI: 10.1016/j.heliyon.2023.e14799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Some oncoproteins along with stress kinase general control non-derepressible 2 (GCN2) can ensure the induction of activating transcription factor 4 (ATF4) to counteract amino acid deprivation; however, little is known regarding the role of the oncogenic EGFR-PI3K pathway. In this study, we demonstrate that both mutated EGFR and PIK3CA contribute to ATF4 induction following GCN2 activation in NSCLC cells. The inhibition of EGFR or PI3K mutant proteins, pharmacologically or through genetic knockdown, inhibited ATF4 induction without affecting GCN2 activation. A downstream analysis revealed that the oncogenic EGFR-PI3K pathway may utilize mTOR-mediated translation control mechanisms for ATF4 induction. Furthermore, in NSCLC cells harboring co-mutations in EGFR and PIK3CA, the combined inhibition of these oncoproteins markedly suppressed ATF4 induction and the subsequent gene expression program as well as cell viability during amino acid deprivation. Our findings establish a role for the oncogenic EGFR-PI3K pathway in the adaptive stress response and provide a strategy to improve EGFR-targeted NSCLC therapy.
Collapse
|
9
|
Mazumder S, Mitra Ghosh T, Mukherjee UK, Chakravarti S, Amiri F, Waliagha RS, Hemmati F, Mistriotis P, Ahmed S, Elhussin I, Salam AB, Dean-Colomb W, Yates C, Arnold RD, Mitra AK. Integrating Pharmacogenomics Data-Driven Computational Drug Prediction with Single-Cell RNAseq to Demonstrate the Efficacy of a NAMPT Inhibitor against Aggressive, Taxane-Resistant, and Stem-like Cells in Lethal Prostate Cancer. Cancers (Basel) 2022; 14:6009. [PMID: 36497496 PMCID: PMC9738762 DOI: 10.3390/cancers14236009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal. Further, the presence of cancer stem-like cells (EMT/epithelial-to-mesenchymal transdifferentiation) and neuroendocrine PCa (NEPC) subtypes significantly contribute to aggressive/lethal/advanced variants of PCa (AVPC). In this study, we introduced a pharmacogenomics data-driven optimization-regularization-based computational prediction algorithm ("secDrugs") to predict novel drugs against lethal PCa. Integrating secDrug with single-cell RNA-sequencing/scRNAseq as a 'Double-Hit' drug screening tool, we demonstrated that single-cells representing drug-resistant and stem-cell-like cells showed high expression of the NAMPT pathway genes, indicating potential efficacy of the secDrug FK866 which targets NAMPT. Next, using several cell-based assays, we showed substantial impact of FK866 on clinically advanced PCa as a single agent and in combination with taxanes or AR-inhibitors. Bulk-RNAseq and scRNAseq revealed that, in addition to NAMPT inhibition, FK866 regulates tumor metastasis, cell migration, invasion, DNA repair machinery, redox homeostasis, autophagy, as well as cancer stemness-related genes, HES1 and CD44. Further, we combined a microfluidic chip-based cell migration assay with a traditional cell migration/'scratch' assay and demonstrated that FK866 reduces cancer cell invasion and motility, indicating abrogation of metastasis. Finally, using PCa patient datasets, we showed that FK866 is potentially capable of reversing the expression of several genes associated with biochemical recurrence, including IFITM3 and LTB4R. Thus, using FK866 as a proof-of-concept candidate for drug repurposing, we introduced a novel, universally applicable preclinical drug development pipeline to circumvent subclonal aggressiveness, drug resistance, and stemness in lethal PCa.
Collapse
Affiliation(s)
- Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Department of Urology Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ujjal K. Mukherjee
- Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Sayak Chakravarti
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farshad Amiri
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S. Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Salsabil Ahmed
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Isra Elhussin
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad-Bin Salam
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Windy Dean-Colomb
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Hospital, Newnan, GA 30309, USA
| | - Clayton Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| |
Collapse
|
10
|
Patient-specific and gene-corrected induced pluripotent stem cell-derived endothelial cells elucidate single-cell phenotype of pulmonary veno-occlusive disease. Stem Cell Reports 2022; 17:2674-2689. [PMID: 36400028 PMCID: PMC9768576 DOI: 10.1016/j.stemcr.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterized by the preferential remodeling of the pulmonary venules. Hereditary PVOD is caused by biallelic variants of the EIF2AK4 gene. Three PVOD patients who carried the compound heterozygous variants of EIF2AK4 and two healthy controls were recruited and induced pluripotent stem cells (iPSCs) were generated from human peripheral blood mononuclear cells (PBMCs). The EIF2AK4 c.2965C>T variant (PVOD#1), c.3460A>T variant (PVOD#2), and c.4832_4833insAAAG variant (PVOD#3) were corrected by CRISPR-Cas9 in PVOD-iPSCs to generate isogenic controls and gene-corrected-iPSCs (GC-iPSCs). PVOD-iPSC-endothelial cells (ECs) exhibited a decrease in GCN2 protein and mRNA expression when compared with control and GC-ECs. PVOD-ECs exhibited an abnormal EC phenotype featured by excessive proliferation and angiogenesis. The abnormal phenotype of PVOD-ECs was normalized by protein kinase B inhibitors AZD5363 and MK2206. These findings help elucidate the underlying molecular mechanism of PVOD in humans and to identify promising therapeutic drugs for treating the disease.
Collapse
|
11
|
Sharma A, Nair R, Achreja A, Mittal A, Gupta P, Balakrishnan K, Edgar CL, Animasahun O, Dwivedi B, Barwick BG, Gupta VA, Matulis SM, Bhasin M, Lonial S, Nooka AK, Wiita AP, Boise LH, Nagrath D, Shanmugam M. Therapeutic implications of mitochondrial stress-induced proteasome inhibitor resistance in multiple myeloma. SCIENCE ADVANCES 2022; 8:eabq5575. [PMID: 36170375 PMCID: PMC9519052 DOI: 10.1126/sciadv.abq5575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs). Interrogation of ETC-suppressed MM reveals integrated stress response-dependent suppression of protein translation and ubiquitination, leading to PI resistance. ETC and protein translation gene expression signatures from the CoMMpass trial are down-regulated in patients with poor outcome and relapse, corroborating our in vitro findings. ETC-suppressed MM exhibits up-regulation of the cystine-glutamate antiporter SLC7A11, and analysis of patient single-cell RNA-seq shows that clusters with low ETC gene expression correlate with higher SLC7A11 expression. Furthermore, erastin or venetoclax treatment diminishes mitochondrial stress-induced PI resistance. In sum, our work demonstrates that mitochondrial stress promotes PI resistance and underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic state.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pulkit Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kamakshi Balakrishnan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Claudia L. Edgar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ajay K. Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
- Corresponding author.
| |
Collapse
|
12
|
Roman-Trufero M, Auner HW, Edwards CM. Multiple myeloma metabolism - a treasure trove of therapeutic targets? Front Immunol 2022; 13:897862. [PMID: 36072593 PMCID: PMC9441940 DOI: 10.3389/fimmu.2022.897862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma is an incurable cancer of plasma cells that is predominantly located in the bone marrow. Multiple myeloma cells are characterized by distinctive biological features that are intricately linked to their core function, the assembly and secretion of large amounts of antibodies, and their diverse interactions with the bone marrow microenvironment. Here, we provide a concise and introductory discussion of major metabolic hallmarks of plasma cells and myeloma cells, their roles in myeloma development and progression, and how they could be exploited for therapeutic purposes. We review the role of glucose consumption and catabolism, assess the dependency on glutamine to support key metabolic processes, and consider metabolic adaptations in drug-resistant myeloma cells. Finally, we examine the complex metabolic effects of proteasome inhibitors on myeloma cells and the extracellular matrix, and we explore the complex relationship between myeloma cells and bone marrow adipocytes.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Holger W. Auner
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Lechartier B, Girerd B, Eyries M, Beurnier A, Humbert M, Montani D. Screening for pulmonary veno-occlusive disease in heterozygous EIF2AK4 variant carriers. Eur Respir J 2022; 60:13993003.00760-2022. [PMID: 35710265 DOI: 10.1183/13993003.00760-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Benoit Lechartier
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Barbara Girerd
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mélanie Eyries
- Département de génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, France, and UMR_S 1166 Sorbonne Université, France
| | - Antoine Beurnier
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Physiology - Pulmonary Function Testing, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France .,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
15
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
17
|
GCN2: roles in tumour development and progression. Biochem Soc Trans 2022; 50:737-745. [PMID: 35311890 PMCID: PMC9162460 DOI: 10.1042/bst20211252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
GCN2 (general control nonderepessible 2) is an eIF2α kinase responsible for entirely rewiring the metabolism of cells when they are put under amino acid starvation stress. Recently, there has been renewed interest in GCN2 as a potential oncotarget, with several studies reporting the development of small molecule inhibitors. The foundation of this work is built upon biochemical and cellular data which suggest GCN2 may be aberrantly overexpressed and is responsible for keeping cells on ‘life-support’ while tumours undergo significant nutritional stress during tumorigenesis, allowing cancer stem cells to develop chemotherapeutic resistance. However, most studies which have investigated the role of GCN2 in cancer have been conducted in various cancer model systems, often under a specific set of stresses, mutational backgrounds and drug cocktails. This review aims to comprehensively summarise the biochemical, molecular and cellular literature associated with GCN2 and its role in various cancers and determine whether a consensus can be developed to discern under which circumstances we may wish to target GCN2.
Collapse
|
18
|
Gowin K, Skerget S, Keats JJ, Mikhael J, Cowan AJ. Plasma cell leukemia: A review of the molecular classification, diagnosis, and evidenced-based treatment. Leuk Res 2021; 111:106687. [PMID: 34425325 DOI: 10.1016/j.leukres.2021.106687] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
Plasma cell leukemia is a rare and aggressive plasma cell dyscrasia associated with dismal outcomes. It may arise de novo, primary plasma cell leukemia, or evolve from an antecedent diagnosis of multiple myeloma, secondary plasma cell leukemia. Despite highly effective therapeutics, survival for plasma cell leukemia patients remains poor. Molecular knowledge of plasma cell leukemia has recently expanded with use of gene expression profiling and whole exome sequencing, lending new insights into prognosis and therapeutic development. In this review, we describe the molecular knowledge, clinical characteristics, evidenced-based therapeutic approaches and treatment outcomes of plasma cell leukemia.
Collapse
Affiliation(s)
- Krisstina Gowin
- University of Arizona, Department of Bone Marrow Transplant and Cellular Therapy, Tucson, AZ, United States.
| | - Sheri Skerget
- Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, United States
| | - Jonathan J Keats
- Translational Genomics Research Institute (TGen), Integrated Cancer Genomics Division, Phoenix, AZ, United States
| | - Joseph Mikhael
- Translational Genomics Research Institute (TGen), Applied Cancer Research and Drug Discovery Division, Phoenix, AZ, United States
| | - Andrew J Cowan
- University of Washington, Department of Hematology Oncology, Seattle, WA, United States
| |
Collapse
|