1
|
Warren S, Xiong S, Robles-Magallanes D, Baizabal JM. A vector system encoding histone H3 mutants facilitates manipulations of the neuronal epigenome. Sci Rep 2024; 14:24415. [PMID: 39420029 PMCID: PMC11487264 DOI: 10.1038/s41598-024-74270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The differentiation of developmental cell lineages is associated with genome-wide modifications in histone H3 methylation. However, the causal role of histone H3 methylation in transcriptional regulation and cell differentiation has been difficult to test in mammals. The experimental overexpression of histone H3 mutants carrying lysine-to-methionine (K-to-M) substitutions has emerged as an alternative tool for inhibiting the endogenous levels of histone H3 methylation at specific lysine residues. Here, we leverage the use of histone K-to-M mutants by creating Enhanced Episomal Vectors that enable the simultaneous depletion of multiple levels of histone H3 lysine 4 (H3K4) or lysine 9 (H3K9) methylation in projection neurons of the mouse cerebral cortex. Our approach also facilitates the simultaneous depletion of H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3, respectively) in cortical neurons. In addition, we report a tamoxifen-inducible Cre-FLEX system that allows the activation of mutant histones at specific developmental time points or in the adult cortex, leading to the depletion of specific histone marks. The tools presented here can be implemented in other experimental systems, such as human in vitro models, to test the combinatorial role of histone methylations in developmental fate decisions and the maintenance of cell identity.
Collapse
Affiliation(s)
- Sophie Warren
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sen Xiong
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
2
|
Sinha J, Nickels JF, Thurm AR, Ludwig CH, Archibald BN, Hinks MM, Wan J, Fang D, Bintu L. The H3.3K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. Mol Cell 2024; 84:3899-3915.e7. [PMID: 39368466 DOI: 10.1016/j.molcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
Collapse
Affiliation(s)
- Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan F Nickels
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Connor H Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michaela M Hinks
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Genome Biol 2024; 25:263. [PMID: 39390582 PMCID: PMC11465688 DOI: 10.1186/s13059-024-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development and disease, how the molecular agents collectively shape the H3K36me landscape is unclear. RESULTS We use mouse mesenchymal stem cells to perturb the H3K36me methyltransferases (K36MTs) and infer the activities of the five most prominent enzymes: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it may also deposit H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other (K36MTs) prime gene bodies with lower methylation states ahead of transcription. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. CONCLUSIONS Within genes, SETD2 primarily deposits H3K36me3, while the other K36MTs deposit H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1 > NSD2 > NSD3 > ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
Affiliation(s)
- Gerry A Shipman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Reinnier Padilla
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Francisca N Vitorino
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joanna M Gongora
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A Garcia
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
4
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
5
|
Sad K, Jones CY, Fawwal DV, Hill EJ, Skinner K, Lustenberger S, Lee RS, Elayavalli SR, Farhi J, Lemon LD, Fasken MB, Hong AL, Sloan SA, Corbett AH, Spangle JM. Histone H3 E50K mutation confers oncogenic activity and supports an EMT phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561775. [PMID: 37873162 PMCID: PMC10592736 DOI: 10.1101/2023.10.11.561775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequencing of human patient tumors has identified recurrent missense mutations in genes encoding core histones. We report that mutations that convert histone H3 amino acid 50 from a glutamate to a lysine (H3E50K) support an oncogenic phenotype in human cells. Expression of H3E50K is sufficient to transform human cells as evidenced by a dramatic increase in cell migration and invasion, and a statistically significant increase in proliferation and clonogenicity. H3E50K also increases the invasive phenotype in the context of co-occurring BRAF mutations, which are present in patient tumors characterized by H3E50K. H3E50 lies on the globular domain surface in a region that contacts H4 within the nucleosome. We find that H3E50K perturbs proximal H3 post-translational modifications globally and dysregulates gene expression, activating the epithelial to mesenchymal transition. Functional studies using S. cerevisiae reveal that, while yeast cells that express H3E50K as the sole copy of histone H3 show sensitivity to cellular stressors, including caffeine, H3E50K cells display some genetic interactions that are distinct from the characterized H3K36M oncohistone yeast model. Taken together, these data suggest that additional histone H3 mutations have the potential to be oncogenic drivers and function through distinct mechanisms that dysregulate gene expression.
Collapse
|
6
|
Shi TH, Sugishita H, Gotoh Y. Crosstalk within and beyond the Polycomb repressive system. J Cell Biol 2024; 223:e202311021. [PMID: 38506728 PMCID: PMC10955045 DOI: 10.1083/jcb.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.
Collapse
Affiliation(s)
- Tianyi Hideyuki Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugishita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
He L, Cao Y, Sun L. NSD family proteins: Rising stars as therapeutic targets. CELL INSIGHT 2024; 3:100151. [PMID: 38371593 PMCID: PMC10869250 DOI: 10.1016/j.cellin.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Epigenetic modifications, including DNA methylation and histone post-translational modifications, intricately regulate gene expression patterns by influencing DNA accessibility and chromatin structure in higher organisms. These modifications are heritable, are independent of primary DNA sequences, undergo dynamic changes during development and differentiation, and are frequently disrupted in human diseases. The reversibility of epigenetic modifications makes them promising targets for therapeutic intervention and drugs targeting epigenetic regulators (e.g., tazemetostat, targeting the H3K27 methyltransferase EZH2) have been applied in clinical therapy for multiple cancers. The NSD family of H3K36 methyltransferase enzymes-including NSD1 (KMT3B), NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1)-are now receiving drug development attention, with the exciting advent of an NSD2 inhibitor (KTX-1001) advancing to Phase I clinical trials for relapsed or refractory multiple myeloma. NSD proteins recognize and catalyze methylation of histone lysine marks, thereby regulating chromatin integrity and gene expression. Multiple studies have implicated NSD proteins in human disease, noting impacts from translocations, aberrant expression, and various dysfunctional somatic mutations. Here, we review the biological functions of NSD proteins, epigenetic cooperation related to NSD proteins, and the accumulating evidence linking these proteins to developmental disorders and tumorigenesis, while additionally considering prospects for the development of innovative epigenetic therapies.
Collapse
Affiliation(s)
- Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Yiping Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Xu M, Sun Z, Shi H, Yue J, Xiong X, Wu Z, Kou Y, Tao Z. Two H3K36 methyltransferases differentially associate with transcriptional activity and enrichment of facultative heterochromatin in rice blast fungus. ABIOTECH 2024; 5:1-16. [PMID: 38576437 PMCID: PMC10987451 DOI: 10.1007/s42994-023-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/17/2023] [Indexed: 04/06/2024]
Abstract
Di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/3) is catalysed by histone methyltransferase Set2, which plays an essential role in transcriptional regulation. Although there is a single H3K36 methyltransferase in yeast and higher eukaryotes, two H3K36 methyltransferases, Ash1 and Set2, were present in many filamentous fungi. However, their roles in H3K36 methylation and transcriptional regulation remained unclear. Combined with methods of RNA-seq and ChIP-seq, we revealed that both Ash1 and Set2 are redundantly required for the full H3K36me2/3 activity in Magnaporthe oryzae, which causes the devastating worldwide rice blast disease. Ash1 and Set2 distinguish genomic H3K36me2/3-marked regions and are differentially associated with repressed and activated transcription, respectively. Furthermore, Ash1-catalysed H3K36me2 was co-localized with H3K27me3 at the chromatin, and Ash1 was required for the enrichment and transcriptional silencing of H3K27me3-occupied genes. With the different roles of Ash1 and Set2, in H3K36me2/3 enrichment and transcriptional regulation on the stress-responsive genes, they differentially respond to various stresses in M. oryzae. Overall, we reveal a novel mechanism by which two H3K36 methyltransferases catalyze H3K36me2/3 that differentially associate with transcriptional activities and contribute to enrichment of facultative heterochromatin in eukaryotes. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00127-3.
Collapse
Affiliation(s)
- Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ziyue Sun
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Jiangnan Yue
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhongling Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
9
|
Kinoshita S, Kojima K, Ohnishi E, Takayama Y, Kikuchi H, Takada S, Nakabayashi K, Kawai T, Hata K. Loss of NSD2 causes dysregulation of synaptic genes and altered H3K36 dimethylation in mice. Front Genet 2024; 15:1308234. [PMID: 38419783 PMCID: PMC10899350 DOI: 10.3389/fgene.2024.1308234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Epigenetic disruptions have been implicated in neurodevelopmental disorders. NSD2 is associated with developmental delay/intellectual disability; however, its role in brain development and function remains unclear. Methods: We performed transcriptomic and epigenetic analyses using Nsd2 knockout mice to better understand the role of NSD2 in the brain. Results and discussion: Transcriptomic analysis revealed that the loss of NSD2 caused dysregulation of genes related to synaptic transmission and formation. By analyzing changes in H3 lysine 36 dimethylation (H3K36me2), NSD2-mediated H3K36me2 mainly marked quiescent state regions and the redistribution of H3K36me2 occurred at transcribed genes and enhancers. By integrating transcriptomic and epigenetic data, we observed that H3K36me2 changes in a subset of dysregulated genes related to synaptic transmission and formation. These results suggest that NSD2 is involved in the regulation of genes important for neural function through H3K36me2. Our findings provide insights into the role of NSD2 and improve our understanding of epigenetic regulation in the brain.
Collapse
Affiliation(s)
- Shiori Kinoshita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of NCCHD Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Kojima
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eriko Ohnishi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuka Takayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroki Kikuchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
10
|
Ko EK, Anderson A, D'souza C, Zou J, Huang S, Cho S, Alawi F, Prouty S, Lee V, Yoon S, Krick K, Horiuchi Y, Ge K, Seykora JT, Capell BC. Disruption of H3K36 methylation provokes cellular plasticity to drive aberrant glandular formation and squamous carcinogenesis. Dev Cell 2024; 59:187-198.e7. [PMID: 38198888 PMCID: PMC10872381 DOI: 10.1016/j.devcel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Chromatin organization is essential for maintaining cell-fate trajectories and developmental programs. Here, we find that disruption of H3K36 methylation dramatically impairs normal epithelial differentiation and development, which promotes increased cellular plasticity and enrichment of alternative cell fates. Specifically, we observe a striking increase in the aberrant generation of excessive epithelial glandular tissues, including hypertrophic salivary, sebaceous, and meibomian glands, as well as enhanced squamous tumorigenesis. These phenotypic and gene expression manifestations are associated with loss of H3K36me2 and rewiring of repressive H3K27me3, changes we also observe in human patients with glandular hyperplasia. Collectively, these results have identified a critical role for H3K36 methylation in both in vivo epithelial cell-fate decisions and the prevention of squamous carcinogenesis and suggest that H3K36 methylation modulation may offer new avenues for the treatment of numerous common disorders driven by altered glandular function, which collectively affect large segments of the human population.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carina D'souza
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sijia Huang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Institute of Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sohyun Cho
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Faizan Alawi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn School of Dental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vivian Lee
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keegan Krick
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yoko Horiuchi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3 and ASH1L reveals their distinct contributions to H3K36 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559313. [PMID: 37905045 PMCID: PMC10614729 DOI: 10.1101/2023.09.27.559313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development, disease, and cancer, how the molecular agents collectively shape the H3K36me landscape is unclear. Results We use a mouse mesenchymal stem cell model to perturb the H3K36me deposition machinery and infer the activities of the five most prominent players: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it also deposits H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other H3K36 methyltransferases (K36MTs) prime gene bodies with lower methylation states ahead of transcription. Through a reductive approach, we uncover the distribution patterns of NSD3- and ASH1L-catalyzed H3K36me2. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. Conclusions Within genes, SETD2 deposits both H3K36me2/3, while the other K36MTs are capable of depositing H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1>NSD2>NSD3>ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
|
13
|
Sinha J, Nickels JF, Thurm AR, Ludwig CH, Archibald BN, Hinks MM, Wan J, Fang D, Bintu L. The H3.3 K36M oncohistone disrupts the establishment of epigenetic memory through loss of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562147. [PMID: 37873347 PMCID: PMC10592807 DOI: 10.1101/2023.10.13.562147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Histone H3.3 is frequently mutated in cancers, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the cellular epigenetic landscape, it remains unclear how it affects the dynamics of gene expression. Here, we use a synthetic reporter to measure the effect of H3.3K36M on silencing and epigenetic memory after recruitment of KRAB: a member of the largest class of human repressors, commonly used in synthetic biology, and associated with H3K9me3. We find that H3.3K36M, which decreases H3K36 methylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a new model for establishment and maintenance of epigenetic memory, where H3K36 methylation is necessary to convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
Collapse
Affiliation(s)
- Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan F. Nickels
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Abby R. Thurm
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Connor H. Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bella N. Archibald
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michaela M. Hinks
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jun Wan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Dan J, Du Z, Zhang J, Chen T. The interplay between H3K36 methylation and DNA methylation in cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0234. [PMID: 37602556 PMCID: PMC10476472 DOI: 10.20892/j.issn.2095-3941.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zeling Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Jinghong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston 77030, USA
| |
Collapse
|
15
|
Hoetker MS, Yagi M, Di Stefano B, Langerman J, Cristea S, Wong LP, Huebner AJ, Charlton J, Deng W, Haggerty C, Sadreyev RI, Meissner A, Michor F, Plath K, Hochedlinger K. H3K36 methylation maintains cell identity by regulating opposing lineage programmes. Nat Cell Biol 2023; 25:1121-1134. [PMID: 37460697 PMCID: PMC10896483 DOI: 10.1038/s41556-023-01191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
Collapse
Affiliation(s)
- Michael S Hoetker
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masaki Yagi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Justin Langerman
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Weixian Deng
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Chuck Haggerty
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franziska Michor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Ludwig Center at Harvard, Boston, MA, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Lindehell H, Schwartz YB, Larsson J. Methylation of lysine 36 on histone H3 is required to control transposon activities in somatic cells. Life Sci Alliance 2023; 6:e202201832. [PMID: 37169594 PMCID: PMC10176111 DOI: 10.26508/lsa.202201832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Transposable elements constitute a substantial portion of most eukaryotic genomes and their activity can lead to developmental and neuronal defects. In the germline, transposon activity is antagonized by the PIWI-interacting RNA pathway tasked with repression of transposon transcription and degrading transcripts that have already been produced. However, most of the genes required for transposon control are not expressed outside the germline, prompting the question: what causes deleterious transposons activity in the soma and how is it managed? Here, we show that disruptions of the Histone 3 lysine 36 methylation machinery led to increased transposon transcription in Drosophila melanogaster brains and that there is division of labour for the repression of transposable elements between the different methyltransferases Set2, NSD, and Ash1. Furthermore, we show that disruption of methylation leads to somatic activation of key genes in the PIWI-interacting RNA pathway and the preferential production of RNA from dual-strand piRNA clusters.
Collapse
Affiliation(s)
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Li JJ, Vasciaveo A, Karagiannis D, Sun Z, Chen X, Socciarelli F, Frankenstein Z, Zou M, Pannellini T, Chen Y, Gardner K, Robinson BD, de Bono J, Abate-Shen C, Rubin MA, Loda M, Sawyers CL, Califano A, Lu C, Shen MM. NSD2 maintains lineage plasticity and castration-resistance in neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549585. [PMID: 37502956 PMCID: PMC10370123 DOI: 10.1101/2023.07.18.549585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.
Collapse
|
18
|
Identification of alternative transcripts of NSD1 gene in Sotos Syndrome patients and healthy subjects. Gene 2023; 851:146970. [DOI: 10.1016/j.gene.2022.146970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
19
|
Conteduca G, Cangelosi D, Coco S, Malacarne M, Baldo C, Arado A, Pinto R, Testa B, Coviello DA. NSD1 Mutations in Sotos Syndrome Induce Differential Expression of Long Noncoding RNAs, miR646 and Genes Controlling the G2/M Checkpoint. Life (Basel) 2022; 12:life12070988. [PMID: 35888078 PMCID: PMC9324496 DOI: 10.3390/life12070988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022] Open
Abstract
An increasing amount of evidence indicates the critical role of the NSD1 gene in Sotos syndrome (SoS), a rare genetic disease, and in tumors. Molecular mechanisms affected by NSD1 mutations are largely uncharacterized. In order to assess the impact of NSD1 haploinsufficiency in the pathogenesis of SoS, we analyzed the gene expression profile of fibroblasts isolated from the skin samples of 15 SoS patients and of 5 healthy parents. We identified seven differentially expressed genes and five differentially expressed noncoding RNAs. The most upregulated mRNA was stratifin (SFN) (fold change, 3.9, Benjamini−Hochberg corrected p < 0.05), and the most downregulated mRNA was goosecoid homeobox (GSC) (fold change, 3.9, Benjamini−Hochberg corrected p < 0.05). The most upregulated lncRNA was lnc-C2orf84-1 (fold change, 4.28, Benjamini−Hochberg corrected p < 0.001), and the most downregulated lncRNA was Inc-C15orf57 (fold change, −0.7, Benjamini−Hochberg corrected p < 0.05). A gene set enrichment analysis reported the enrichment of genes involved in the KRAS and E2F signaling pathways, splicing regulation and cell cycle G2/M checkpoints. Our results suggest that NSD1 is involved in cell cycle regulation and that its mutation can induce the down-expression of genes involved in tumoral and neoplastic differentiation. The results contribute to defining the role of NSD1 in fibroblasts for the prevention, diagnosis and control of SoS.
Collapse
Affiliation(s)
- Giuseppina Conteduca
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Michela Malacarne
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Alessia Arado
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Rute Pinto
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Barbara Testa
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
| | - Domenico A. Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (G.C.); (M.M.); (C.B.); (A.A.); (R.P.); (B.T.)
- Correspondence: ; Tel.: +39-010-5636-3977
| |
Collapse
|
20
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
21
|
Wang Y, Han Y, Jin Y, He Q, Wang Z. The Advances in Epigenetics for Cancer Radiotherapy. Int J Mol Sci 2022; 23:ijms23105654. [PMID: 35628460 PMCID: PMC9145982 DOI: 10.3390/ijms23105654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is an important factor threatening human life and health; in recent years, its morbidity and mortality remain high and demosntrate an upward trend. It is of great significance to study its pathogenesis and targeted therapy. As the complex mechanisms of epigenetic modification has been increasingly discovered, they are more closely related to the occurrence and development of cancer. As a reversible response, epigenetic modification is of great significance for the improvement of classical therapeutic measures and the discovery of new therapeutic targets. It has become a research focusto explore the multi-level mechanisms of RNA, DNA, chromatin and proteins. As an important means of cancer treatment, radiotherapy has made great progress in technology, methods, means and targeted sensitization after years of rapid development, and even research on radiotherapy based on epigenetic modification is rampant. A series of epigenetic effects of radiation on DNA methylation, histone modification, chromosome remodeling, RNA modification and non-coding RNA during radiotherapy affects the therapeutic effects and prognosis. Starting from the epigenetic mechanism of tumorigenesis, this paper reviews the latest progress in the mechanism of interaction between epigenetic modification and cancer radiotherapy and briefly introduces the main types, mechanisms and applications of epigenetic modifiers used for radiotherapy sensitization in order to explore a more individual and dynamic approach of cancer treatment based on epigenetic mechanism. This study strives to make a modest contribution to the progress of human disease research.
Collapse
Affiliation(s)
| | | | | | - Qiang He
- Correspondence: (Q.H.); (Z.W.); Tel.: +86-431-85619443 (Z.W.)
| | - Zhicheng Wang
- Correspondence: (Q.H.); (Z.W.); Tel.: +86-431-85619443 (Z.W.)
| |
Collapse
|
22
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Drosos Y, Myers JA, Xu B, Mathias KM, Beane EC, Radko-Juettner S, Mobley RJ, Larsen ME, Piccioni F, Ma X, Low J, Hansen BS, Peters ST, Bhanu NV, Dhanda SK, Chen T, Upadhyaya SA, Pruett-Miller SM, Root DE, Garcia BA, Partridge JF, Roberts CW. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol Cell 2022; 82:2472-2489.e8. [DOI: 10.1016/j.molcel.2022.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
|
24
|
Furth N, Shema E. It's all in the combination: decoding the epigenome for cancer research and diagnostics. Curr Opin Genet Dev 2022; 73:101899. [PMID: 35091256 PMCID: PMC9168437 DOI: 10.1016/j.gde.2022.101899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Genome regulation is governed by the dynamics of chromatin modifications. The extensive and diverse array of DNA and histone modifications allow multiple elements to act combinatorically and direct tissue-specific and cell-specific outcomes. Yet, our ability to elucidate these complex combinations and link them to normal genome regulation, as well as understand their deregulation in cancer, has been hindered by the lack of suitable technologies. Here, we describe recent findings indicating the importance of the combinatorial epigenome, and novel methodologies to measure and characterize these combinations. These complementary methods span multiple disciplines, providing a means to decode epigenetic combinations and link them to biological outcomes. Finally, we discuss the promise of harnessing the rich combinatorial epigenetic information to improve cancer diagnostics and monitoring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Abstract
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author: Chao Lu:
| |
Collapse
|
26
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
27
|
Soshnev AA, Allis CD, Cesarman E, Melnick AM. Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Res 2021; 81:6061-6070. [PMID: 34580064 PMCID: PMC8678342 DOI: 10.1158/0008-5472.can-21-2619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Aberrant cell fate decisions due to transcriptional misregulation are central to malignant transformation. Histones are the major constituents of chromatin, and mutations in histone-encoding genes are increasingly recognized as drivers of oncogenic transformation. Mutations in linker histone H1 genes were recently identified as drivers of peripheral lymphoid malignancy. Loss of H1 in germinal center B cells results in widespread chromatin decompaction, redistribution of core histone modifications, and reactivation of stem cell-specific transcriptional programs. This review explores how linker histones and mutations therein regulate chromatin structure, highlighting reciprocal relationships between epigenetic circuits, and discusses the emerging role of aberrant three-dimensional chromatin architecture in malignancy.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology & Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
28
|
Tauchmann S, Schwaller J. NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. Life (Basel) 2021; 11:life11090877. [PMID: 34575025 PMCID: PMC8465848 DOI: 10.3390/life11090877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 01/25/2023] Open
Abstract
Recurrent epigenomic alterations associated with multiple human pathologies have increased the interest in the nuclear receptor binding SET domain protein 1 (NSD1) lysine methyltransferase. Here, we review the current knowledge about the biochemistry, cellular function and role of NSD1 in human diseases. Several studies have shown that NSD1 controls gene expression by methylation of lysine 36 of histone 3 (H3K36me1/2) in a complex crosstalk with de novo DNA methylation. Inactivation in flies and mice revealed that NSD1 is essential for normal development and that it regulates multiple cell type-specific functions by interfering with transcriptional master regulators. In humans, putative loss of function NSD1 mutations characterize developmental syndromes, such as SOTOS, as well as cancer from different organs. In pediatric hematological malignancies, a recurrent chromosomal translocation forms a NUP98-NSD1 fusion with SET-dependent leukemogenic activity, which seems targetable by small molecule inhibitors. To treat or prevent diseases driven by aberrant NSD1 activity, future research will need to pinpoint the mechanistic correlation between the NSD1 gene dosage and/or mutational status with development, homeostasis, and malignant transformation.
Collapse
|
29
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
30
|
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep 2021; 22:e51803. [PMID: 33844406 PMCID: PMC8097341 DOI: 10.15252/embr.202051803] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome-wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA- and histone-modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.
Collapse
Affiliation(s)
- Yinglu Li
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
31
|
Velasco G, Ulveling D, Rondeau S, Marzin P, Unoki M, Cormier-Daire V, Francastel C. Interplay between Histone and DNA Methylation Seen through Comparative Methylomes in Rare Mendelian Disorders. Int J Mol Sci 2021; 22:3735. [PMID: 33916664 PMCID: PMC8038329 DOI: 10.3390/ijms22073735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.
Collapse
Affiliation(s)
- Guillaume Velasco
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Damien Ulveling
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Sophie Rondeau
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Pauline Marzin
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Claire Francastel
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| |
Collapse
|