1
|
Kong X, Wu T, Cai H, Chen Z, Wang Y, He P, Liu P, Li L, Peng S, Xu F, Wang J, Zhang H, Wang L. Construction of ceRNA network mediated by circRNAs screening from microarray and identification of novel biomarkers for myasthenia gravis. Gene 2024; 918:148463. [PMID: 38631652 DOI: 10.1016/j.gene.2024.148463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Recent studies have revealed that circRNA can serve as ceRNA to participate in multiple autoimmune diseases. Our study aims to explore the key circRNA as ceRNA and biomarker for MG. METHODS We used circRNA microarray to explore differentially expressed circRNAs (DECs) from MG and compare with control. Then, we predicted the target miRNA associated with DECs and screened miRNAs by the algorithm of random walk with restart (RWR). Next, we constructed the circRNA-miRNA-mRNA ceRNA regulated network (CMMC) to identify the hub objects. Following, we detected the expression of hub-circRNAs by RT-PCR. We verify has_circ_0004183 (circFRMD4) sponging miR-145-5p regulate cells proliferation using luciferase assay and CCK-8. RESULTS We found that the expression level of circFRMD4 and has_circ_0035381 (circPIGB) were upregulated and has_circ_0089153(circ NUP214) had the lowest expression level in MG. Finally, we proved circFRMD4 sponging miR-145-5p regulate Jurkat cells proliferation. CircFRMD4 take part in the genesis and development of MG via circFRMD4/miR145-5p axis. CONCLUSIONS We found that circFRMD4, circPIGB and circNUP214 can be considered as valuable potential novel biomarkers for AchR + MG. CircFRMD4 participate in the development of AchR + MG via targeting binding with miR-145-5p.
Collapse
Affiliation(s)
- Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hanlu Cai
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhimin Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Neurology, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ping He
- Department of Neurology, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Peng
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Huang EJC, Wu MH, Wang TJ, Huang TJ, Li YR, Lee CY. Myasthenia Gravis: Novel Findings and Perspectives on Traditional to Regenerative Therapeutic Interventions. Aging Dis 2023; 14:1070-1092. [PMID: 37163445 PMCID: PMC10389825 DOI: 10.14336/ad.2022.1215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023] Open
Abstract
The prevalence of myasthenia gravis (MG), an autoimmune disorder, is increasing among all subsets of the population leading to an elevated economic and social burden. The pathogenesis of MG is characterized by the synthesis of autoantibodies against the acetylcholine receptor (AChR), low-density lipoprotein receptor-related protein 4 (LRP4), or muscle-specific kinase at the neuromuscular junction, thereby leading to muscular weakness and fatigue. Based on clinical and laboratory examinations, the research is focused on distinguishing MG from other autoimmune, genetic diseases of neuromuscular transmission. Technological advancements in machine learning, a subset of artificial intelligence (AI) have been assistive in accurate diagnosis and management. Besides, addressing the clinical needs of MG patients is critical to improving quality of life (QoL) and satisfaction. Lifestyle changes including physical exercise and traditional Chinese medicine/herbs have also been shown to exert an ameliorative impact on MG progression. To achieve enhanced therapeutic efficacy, cholinesterase inhibitors, immunosuppressive drugs, and steroids in addition to plasma exchange therapy are widely recommended. Under surgical intervention, thymectomy is the only feasible alternative to removing thymoma to overcome thymoma-associated MG. Although these conventional and current therapeutic approaches are effective, the associated adverse events and surgical complexity limit their wide application. Moreover, Restivo et al. also, to increase survival and QoL, further recent developments revealed that antibody, gene, and regenerative therapies (such as stem cells and exosomes) are currently being investigated as a safer and more efficacious alternative. Considering these above-mentioned points, we have comprehensively reviewed the recent advances in pathological etiologies of MG including COVID-19, and its therapeutic management.
Collapse
Affiliation(s)
- Evelyn Jou-Chen Huang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yan-Rong Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
3
|
Wiboonpong P, Setthawatcharawanich S, Korathanakhun P, Amornpojnimman T, Pruphetkaew N, Chongphattararot P, Sathirapanya C, Sathirapanya P. Comparison of Short-Term Post-Thymectomy Outcomes by Time-Weighted Dosages of Drug Requirements between Thymoma and Non-Thymoma Myasthenia Gravis Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3039. [PMID: 36833734 PMCID: PMC9959777 DOI: 10.3390/ijerph20043039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: Early thymectomy is suggested in all clinically indicated myasthenia gravis (MG) patients. However, short-term clinical response after thymectomy in MG patients has been limitedly described in the literature. This study aimed to compare the 5-year post-thymectomy outcomes between thymoma (Th) and non-thymoma (non-Th) MG patients. (2) Methods: MG patients aged ≥18 years who underwent transsternal thymectomy and had tissue histopathology reports in Songklanagarind Hospital between 2002 and 2020 were enrolled in a retrospective review. The differences in the baseline demographics and clinical characteristics between ThMG and non-Th MG patients were studied. We compared the time-weighted averages (TWAs) of daily required dosages of pyridostigmine, prednisolone or azathioprine to efficiently maintain daily living activities and earnings between the MG patient groups during 5 consecutive years following thymectomy. Post-thymectomy clinical status, exacerbations or crises were followed. Descriptive statistics were used for analysis with statistical significance set at p < 0.05. (3) Results: ThMG patients had significantly older ages of onset and shorter times from the MG diagnosis to thymectomy. Male gender was the only significant factor associated with ThMG. TWAs of the daily MG treatment drug dosages required showed no differences between the groups. Additionally, the rates of exacerbations and crises were not different, but decremental trends were shown in both groups after the thymectomies. (4) Conclusions: The daily dosage requirements of MG treatment drugs were not different. There was a trend of decreasing adverse event rates despite no statistically significant differences during the first 5 years after thymectomy in ThMG and non-ThMG patients.
Collapse
Affiliation(s)
- Phattamon Wiboonpong
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Pat Korathanakhun
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thanyalak Amornpojnimman
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nannapat Pruphetkaew
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pensri Chongphattararot
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chutarat Sathirapanya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pornchai Sathirapanya
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Pioli KT, Pioli PD. Thymus antibody-secreting cells: once forgotten but not lost. Front Immunol 2023; 14:1170438. [PMID: 37122712 PMCID: PMC10130419 DOI: 10.3389/fimmu.2023.1170438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Antibody-secreting cells are essential contributors to the humoral response. This is due to multiple factors which include: 1) the ability to secrete thousands of antibodies per second, 2) the ability to regulate the immune response and 3) the potential to be long-lived. Not surprisingly, these cells can be found in numerous sites within the body which include organs that directly interface with potential pathogens (e.g., gut) and others that provide long-term survival niches (e.g., bone marrow). Even though antibody-secreting cells were first identified in the thymus of both humans and rodents in the 1960s, if not earlier, only recently has this population begun to be extensively investigated. In this article, we provide an update regarding the current breath of knowledge pertaining to thymus antibody-secreting cells and discuss the potential roles of these cells and their impact on health.
Collapse
|
5
|
Binu A, Kumar SS, Padma UD, Madhu K. Pathophysiological basis in the management of myasthenia gravis: a mini review. Inflammopharmacology 2022; 30:61-71. [DOI: 10.1007/s10787-021-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/05/2022]
|