1
|
Wang Z, Sheveleva AM, Li J, Zhou Z, Sapchenko S, Whitehead G, Warren MR, Collison D, Sun J, Schröder M, McInnes EJL, Yang S, Tuna F. Analysis of a Cu-Doped Metal-Organic Framework, MFM-520(Zn 1-x Cu x ), for NO 2 Adsorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305542. [PMID: 37964415 PMCID: PMC10767414 DOI: 10.1002/advs.202305542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Indexed: 11/16/2023]
Abstract
MFM-520(Zn) confines dimers of NO2 with a high adsorption of 4.52 mmol g-1 at 1 bar at 298 K. The synthesis and the incommensurate structure of Cu-doped MFM-520(Zn) are reported. The introduction of paramagnetic Cu2+ sites allows investigation of the electronic and geometric structure of metal site by in situ electron paramagnetic resonance (EPR) spectroscopy upon adsorption of NO2 . By combining continuous wave and electron-nuclear double resonance spectroscopy, an unusual reverse Berry distorted coordination geometry of the Cu2+ centers is observed. Interestingly, Cu-doped MFM-520(Zn0.95 Cu0.05 ) shows enhanced adsorption of NO2 of 5.02 mmol g-1 at 1 bar at 298 K. Whereas MFM-520(Zn) confines adsorbed NO2 as N2 O4 , the presence of monomeric NO2 at low temperature suggests that doping with Cu2+ centers into the framework plays an important role in tuning the dimerization of NO2 molecules in the pore via the formation of specific host-guest interactions.
Collapse
Affiliation(s)
- Zi Wang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Alena M. Sheveleva
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Sergei Sapchenko
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - George Whitehead
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Mark R. Warren
- Diamond Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | - David Collison
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Eric J. L. McInnes
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Floriana Tuna
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
2
|
Wiechers H, Kehl A, Hiller M, Eltzner B, Huckemann SF, Meyer A, Tkach I, Bennati M, Pokern Y. Bayesian optimization to estimate hyperfine couplings from 19F ENDOR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107491. [PMID: 37301045 DOI: 10.1016/j.jmr.2023.107491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of paramagnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of 19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggravated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at high EPR frequencies and fields (⩾94 GHz/3.4 Tesla), chemical shift anisotropy might contribute to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed, the latter suffer from finding local rather than global minima of a suitably defined loss function. Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two and three spin systems lead to physically reasonable solutions, if minima of similar loss can be distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained parameter estimates. Future developments and perspectives are discussed.
Collapse
Affiliation(s)
- H Wiechers
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - B Eltzner
- Research Group Computational Biomolecular Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - S F Huckemann
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany
| | - I Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany.
| | - Y Pokern
- Department of Statistical Science, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Rogers CJ, Bogdanov A, Seal M, Thornton ME, Su XC, Natrajan LS, Goldfarb D, Bowen AM. Frequency swept pulses for the enhanced resolution of ENDOR spectra detecting on higher spin transitions of Gd(III). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107447. [PMID: 37119743 DOI: 10.1016/j.jmr.2023.107447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/29/2023]
Abstract
Half-Integer High Spin (HIHS) systems with zero-field splitting (ZFS) parameters below 1 GHz are generally dominated by the spin |─1/2>→|+1/2 > central transition (CT). Accordingly, most pulsed Electron Paramagnetic Resonance (EPR) experiments are performed at this position for maximum sensitivity. However, in certain cases it can be desirable to detect higher spin transitions away from the CT in such systems. Here, we describe the use of frequency swept Wideband, Uniform Rate, Smooth Truncation (WURST) pulses for transferring spin population from the CT, and other transitions, of Gd(III) to the neighbouring higher spin transition |─3/2>→|─1/2 > at Q- and W-band frequencies. Specifically, we demonstrate this approach to enhance the sensitivity of 1H Mims Electron-Nuclear Double Resonance (ENDOR) measurements on two model Gd(III) aryl substituted 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) complexes, focusing on transitions other than the CT. We show that an enhancement factor greater than 2 is obtained for both complexes at Q- and W-band frequencies by the application of two polarising pulses prior to the ENDOR sequence. This is in agreement with simulations of the spin dynamics of the system during WURST pulse excitation. The technique demonstrated here should allow more sensitive experiments to be measured away from the CT at higher operating temperatures, and be combined with any relevant pulse sequence.
Collapse
Affiliation(s)
- Ciarán J Rogers
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew E Thornton
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China
| | - Louise S Natrajan
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Alice M Bowen
- Department of Chemistry, Photon Science Institute and the National Research Facility for Electron Paramagnetic Resonance, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Szczuka C, Eichel RA, Granwehr J. Gauging the importance of structural parameters for hyperfine coupling constants in organic radicals. RSC Adv 2023; 13:14565-14574. [PMID: 37188254 PMCID: PMC10177955 DOI: 10.1039/d3ra02476h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
The identification of fundamental relationships between atomic configuration and electronic structure typically requires experimental empiricism or systematic theoretical studies. Here, we provide an alternative statistical approach to gauge the importance of structure parameters, i.e., bond lengths, bond angles, and dihedral angles, for hyperfine coupling constants in organic radicals. Hyperfine coupling constants describe electron-nuclear interactions defined by the electronic structure and are experimentally measurable, for example, by electron paramagnetic resonance spectroscopy. Importance quantifiers are computed with the machine learning algorithm neighborhood components analysis using molecular dynamics trajectory snapshots. Atomic-electronic structure relationships are visualized in matrices correlating structure parameters with coupling constants of all magnetic nuclei. Qualitatively, the results reproduce common hyperfine coupling models. Tools to use the presented procedure for other radicals/paramagnetic species or other atomic structure-dependent parameters are provided.
Collapse
Affiliation(s)
- Conrad Szczuka
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Institute of Physical Chemistry, RWTH Aachen University 52056 Aachen Germany
| | - Josef Granwehr
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University 52056 Aachen Germany
| |
Collapse
|
5
|
Meyer A, Kehl A, Cui C, Reichardt FAK, Hecker F, Funk LM, Pan KT, Urlaub H, Tittmann K, Stubbe J, Bennati M. 19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase. J Am Chem Soc 2022; 144:11270-11282. [PMID: 35652913 PMCID: PMC9248007 DOI: 10.1021/jacs.2c02906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribonucleotide reductases
(RNRs) catalyze the reduction of ribonucleotides
to deoxyribonucleotides, thereby playing a key role in DNA replication
and repair. Escherichia coli class
Ia RNR is an α2β2 enzyme complex
that uses a reversible multistep radical transfer (RT) over 32 Å
across its two subunits, α and β, to initiate, using its
metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled
electron-transfer (PCET) process. An unresolved step is the RT involving
Y356(β) and Y731(α) across the α/β
interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was
verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz
pulse electron–electron double resonance spectroscopies. 94
GHz 19F electron-nuclear double resonance spectroscopy
allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the
double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published
cryo-EM structure of a holo RNR complex. For both mutant combinations,
the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with
3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent
with the conformation observed in the cryo-EM structure. The observations
unexpectedly suggest the possibility of a colinear PCET, in which
electron and proton are transferred from the same donor to the same
acceptor between Y356 and Y731. The results
highlight the important role of state-of-the-art EPR spectroscopy
to decipher this mechanism.
Collapse
Affiliation(s)
- Andreas Meyer
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Annemarie Kehl
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Fehmke A K Reichardt
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Lisa-Marie Funk
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - Kuan-Ting Pan
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Henning Urlaub
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Kai Tittmann
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Chemistry, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Kehl A, Hiller M, Hecker F, Tkach I, Dechert S, Bennati M, Meyer A. Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107091. [PMID: 34749036 DOI: 10.1016/j.jmr.2021.107091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Pulsed 19F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of 19F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three 19F atoms. CF3 groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented 19F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the 19F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from 19F ENDOR spectra.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany.
| | - Andreas Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Abstract
Electron-nuclear double resonance (ENDOR) measures the hyperfine interaction of magnetic nuclei with paramagnetic centers and is hence a powerful tool for spectroscopic investigations extending from biophysics to material science. Progress in microwave technology and the recent availability of commercial electron paramagnetic resonance (EPR) spectrometers up to an electron Larmor frequency of 263 GHz now open the opportunity for a more quantitative spectral analysis. Using representative spectra of a prototype amino acid radical in a biologically relevant enzyme, the [Formula: see text] in Escherichia coli ribonucleotide reductase, we developed a statistical model for ENDOR data and conducted statistical inference on the spectra including uncertainty estimation and hypothesis testing. Our approach in conjunction with 1H/2H isotopic labeling of [Formula: see text] in the protein unambiguously established new unexpected spectral contributions. Density functional theory (DFT) calculations and ENDOR spectral simulations indicated that these features result from the beta-methylene hyperfine coupling and are caused by a distribution of molecular conformations, likely important for the biological function of this essential radical. The results demonstrate that model-based statistical analysis in combination with state-of-the-art spectroscopy accesses information hitherto beyond standard approaches.
Collapse
|