1
|
Eskelinen A, Jessen MT, Bahamonde HA, Bakker JD, Borer ET, Caldeira MC, Harpole WS, Jia M, Lannes LS, Nogueira C, Olde Venterink H, Peri PL, Porath-Krause AJ, Seabloom EW, Schroeder K, Tognetti PM, Yasui SLE, Virtanen R, Sullivan LL. Herbivory and nutrients shape grassland soil seed banks. Nat Commun 2023; 14:3949. [PMID: 37402739 DOI: 10.1038/s41467-023-39677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.
Collapse
Affiliation(s)
- Anu Eskelinen
- Ecology and Genetics Unit, University of Oulu, P.O. Box 3000, Oulu, Finland.
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Puschstraße 4, 04103, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103, Leipzig, Germany.
| | - Maria-Theresa Jessen
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Puschstraße 4, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| | - Hector A Bahamonde
- Faculty of Agricultural and Forestry Sciences, National University of La Plata, Av. 60 y 119, La Plata, 1900, Buenos Aires, Argentina
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, WA, 98195-4115, USA
| | - Elizabeth T Borer
- University of Minnesota, Department of Ecology, Evolution and Behavior, 140 Gortner Laboratory, 1479 Gortner Ave, St Paul, MN, 55108, USA
| | - Maria C Caldeira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - W Stanley Harpole
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Puschstraße 4, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, am Kirchtor 1, 06108, Halle (Saale), Germany
| | - Meiyu Jia
- School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, WA, 98195-4115, USA
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekou Wai Street, Beijing City, 100875, China
| | - Luciola S Lannes
- Department of Biology and Animal Sciences, São Paulo State University-UNESP, Ilha Solteira, 01049-010, Brazil
| | - Carla Nogueira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | - Pablo L Peri
- National Institute of Agricultural Research (INTA), Southern Patagonia National University (UNPA), CONICET, Río Gallegos, (CP 9400), Santa Cruz, Argentina
| | - Anita J Porath-Krause
- University of Minnesota, Department of Ecology, Evolution and Behavior, 140 Gortner Laboratory, 1479 Gortner Ave, St Paul, MN, 55108, USA
| | - Eric W Seabloom
- University of Minnesota, Department of Ecology, Evolution and Behavior, 140 Gortner Laboratory, 1479 Gortner Ave, St Paul, MN, 55108, USA
| | - Katie Schroeder
- University of Minnesota, Department of Ecology, Evolution and Behavior, 140 Gortner Laboratory, 1479 Gortner Ave, St Paul, MN, 55108, USA
- Odum School of Ecology, University of Georgia, Athens, GA, 30603, USA
| | - Pedro M Tognetti
- IFEVA, University of Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martin, 4453 C1417DSE, Buenos Aires, Argentina
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Simone-Louise E Yasui
- Queensland University of Technology, School of Biological and Environmental Sciences, Brisbane, QLD 4072, Australia
| | - Risto Virtanen
- Ecology and Genetics Unit, University of Oulu, P.O. Box 3000, Oulu, Finland
| | - Lauren L Sullivan
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Cui C, Wang Z, Su Y, Wang T. Antioxidant Regulation and DNA Methylation Dynamics During Mikania micrantha Seed Germination Under Cold Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:856527. [PMID: 35463422 PMCID: PMC9024368 DOI: 10.3389/fpls.2022.856527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
As a primary goal, adaptation to cold climate could expand an invasion range of exotic plants. Here, we aimed to explore the regulation strategy of M. micrantha seed development under cold stress through molecular physiology and multi-omics analysis. Significant increase of hydrogen peroxide, malondialdehyde, and electrolyte leakage observed under cold stress revealed that oxidative damage within M. micrantha seed cells was induced in the initial germination phase. Proteomic data underscored an activation of antioxidant activity to maintain redox homeostasis, with a cluster of antioxidant proteins identified. Genomic-wide transcriptome, in combination with time-series whole-genome bisulfite sequencing mining, elucidated that seven candidate genes, which were the target of DNA demethylation-dependent ROS scavenging, were possibly associated with an M. micrantha germ break. Progressive gain of CHH context DNA methylation identified in an early germination phrase suggested a role of a DNA methylation pathway, while an active DNA demethylation pathway was also initiated during late seed development, which was in line with the expression trend of methylation and demethylation-related genes verified through qRT-PCR. These data pointed out that cold-dependent DNA demethylation and an antioxidant regulatory were involved together in restoring seed germination. The expression level of total 441 genes presented an opposite trend to the methylation divergence, while the expression of total 395 genes was proved to be negatively associated with their methylation levels. These data provided new insights into molecular reprograming events during M. micrantha seed development.
Collapse
Affiliation(s)
- Can Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Matilla AJ. The Orthodox Dry Seeds Are Alive: A Clear Example of Desiccation Tolerance. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010020. [PMID: 35009023 PMCID: PMC8747232 DOI: 10.3390/plants11010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
To survive in the dry state, orthodox seeds acquire desiccation tolerance. As maturation progresses, the seeds gradually acquire longevity, which is the total timespan during which the dry seeds remain viable. The desiccation-tolerance mechanism(s) allow seeds to remain dry without losing their ability to germinate. This adaptive trait has played a key role in the evolution of land plants. Understanding the mechanisms for seed survival after desiccation is one of the central goals still unsolved. That is, the cellular protection during dry state and cell repair during rewatering involves a not entirely known molecular network(s). Although desiccation tolerance is retained in seeds of higher plants, resurrection plants belonging to different plant lineages keep the ability to survive desiccation in vegetative tissue. Abscisic acid (ABA) is involved in desiccation tolerance through tight control of the synthesis of unstructured late embryogenesis abundant (LEA) proteins, heat shock thermostable proteins (sHSPs), and non-reducing oligosaccharides. During seed maturation, the progressive loss of water induces the formation of a so-called cellular "glass state". This glassy matrix consists of soluble sugars, which immobilize macromolecules offering protection to membranes and proteins. In this way, the secondary structure of proteins in dry viable seeds is very stable and remains preserved. ABA insensitive-3 (ABI3), highly conserved from bryophytes to Angiosperms, is essential for seed maturation and is the only transcription factor (TF) required for the acquisition of desiccation tolerance and its re-induction in germinated seeds. It is noteworthy that chlorophyll breakdown during the last step of seed maturation is controlled by ABI3. This update contains some current results directly related to the physiological, genetic, and molecular mechanisms involved in survival to desiccation in orthodox seeds. In other words, the mechanisms that facilitate that an orthodox dry seed is a living entity.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|