1
|
Pozhydaieva N, Billau FA, Wolfram-Schauerte M, Ramírez Rojas AA, Paczia N, Schindler D, Höfer K. Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications. PLoS Genet 2024; 20:e1011384. [PMID: 39231196 PMCID: PMC11404850 DOI: 10.1371/journal.pgen.1011384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
2
|
Szafran K, Rafalski D, Skowronek K, Wojciechowski M, Kazrani A, Gilski M, Xu SY, Bochtler M. Structural analysis of the BisI family of modification dependent restriction endonucleases. Nucleic Acids Res 2024; 52:9103-9118. [PMID: 39041409 PMCID: PMC11347163 DOI: 10.1093/nar/gkae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
The BisI family of restriction endonucleases is unique in requiring multiple methylated or hydroxymethylated cytosine residues within a short recognition sequence (GCNGC), and in cleaving directly within this sequence, rather than at a distance. Here, we report that the number of modified cytosines that are required for cleavage can be tuned by the salt concentration. We present crystal structures of two members of the BisI family, NhoI and Eco15I_Ntd (N-terminal domain of Eco15I), in the absence of DNA and in specific complexes with tetra-methylated GCNGC target DNA. The structures show that NhoI and Eco15I_Ntd sense modified cytosine bases in the context of double-stranded DNA (dsDNA) without base flipping. In the co-crystal structures of NhoI and Eco15I_Ntd with DNA, the internal methyl groups (G5mCNGC) interact with the side chains of an (H/R)(V/I/T/M) di-amino acid motif near the C-terminus of the distal enzyme subunit and arginine residue from the proximal subunit. The external methyl groups (GCNG5mC) interact with the proximal enzyme subunit, mostly through main chain contacts. Surface plasmon resonance analysis for Eco15I_Ntd shows that the internal and external methyl binding pockets contribute about equally to sensing of cytosine methyl groups.
Collapse
Affiliation(s)
- Katarzyna Szafran
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Dominik Rafalski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | - Mirosław Gilski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Pyle JD, Lund SR, O'Toole KH, Saleh L. Virus-encoded glycosyltransferases hypermodify DNA with diverse glycans. Cell Rep 2024; 43:114631. [PMID: 39154342 DOI: 10.1016/j.celrep.2024.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Collapse
Affiliation(s)
- Jesse D Pyle
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Sean R Lund
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Katherine H O'Toole
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
4
|
González de Aledo M, Blasco L, Lopez M, Ortiz-Cartagena C, Bleriot I, Pacios O, Hernández-García M, Cantón R, Tomas M. Prophage identification and molecular analysis in the genomes of Pseudomonas aeruginosa strains isolated from critical care patients. mSphere 2023; 8:e0012823. [PMID: 37366636 PMCID: PMC10449497 DOI: 10.1128/msphere.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 Pseudomonas aeruginosa strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously. After annotation, five of them were discarded as incomplete, and the 13 remaining prophages were characterized. Of 13, 10 belonged to the siphovirus tail morphology group, 2 to the podovirus tail morphology group, and 1 to the myovirus tail morphology group. All prophages had a length ranging from 20,199 to 63,401 bp and a GC% between 56.2% and 63.6%. The number of open reading frames (ORFs) oscillated between 32 and 88, and in 3/13 prophages, more than 50% of the ORFs had an unknown function. With our findings, we show that prophages are present in the majority of the P. aeruginosa strains isolated from Portuguese and Spanish critically ill patients, many of them found in more than one circulating strain at the same time and following a similar clonal distribution pattern. Although a great sum of ORFs had an unknown function, number of proteins in relation to viral defense (anti-CRISPR proteins, toxin/antitoxin modules, proteins against restriction-modification systems) as well as to prophage interference into their host's quorum sensing system and regulatory cascades were found. This supports the idea that prophages have an influence in bacterial pathogenesis and anti-phage defense. IMPORTANCE Despite being known for decades, prophages remain understudied when compared to the lytic phages employed in phage therapy. This research aims to shed some light into the nature, composition, and role of prophages found within a set of circulating strains of Pseudomas aeruginosa, with special attention to high-risk clones. Given the fact that prophages can effectively influence bacterial pathogenesis, prophage basic research constitutes a topic of growing interest. Furthermore, the abundance of viral defense and regulatory proteins within prophage genomes detected in this study evidences the importance of characterizing the most frequent prophages in circulating clinical strains and in high-risk clones if phage therapy is to be used.
Collapse
Affiliation(s)
- Manuel González de Aledo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Blasco
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria Lopez
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Inés Bleriot
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Maria Tomas
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
5
|
Le HT, Liu M, Grimes CL. Application of bioanalytical and computational methods in decoding the roles of glycans in host-pathogen interactions. Curr Opin Chem Biol 2023; 74:102301. [PMID: 37080155 PMCID: PMC10296625 DOI: 10.1016/j.cbpa.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Host-pathogen interactions (HPIs) are complex processes that require tight regulation. A common regulatory mechanism of HPIs is through glycans of either host cells or pathogens. Due to their diverse sequences, complex structures, and conformations, studies of glycans require highly sensitive and powerful tools. Recent improvements in technology have enabled the application of many bioanalytical techniques and modeling methods to investigate glycans and their mechanisms in HPIs. This mini-review highlights how these advances have been used to understand the role glycans play in HPIs in the past 2 years.
Collapse
Affiliation(s)
- Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Min Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
6
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
7
|
Lee YJ, Dai N, Müller SI, Guan C, Parker MJ, Fraser ME, Walsh SE, Sridar J, Mulholland A, Nayak K, Sun Z, Lin YC, Comb DG, Marks K, Gonzalez R, Dowling DP, Bandarian V, Saleh L, Corrêa IR, Weigele PR. Pathways of thymidine hypermodification. Nucleic Acids Res 2021; 50:3001-3017. [PMID: 34522950 PMCID: PMC8989533 DOI: 10.1093/nar/gkab781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/15/2022] Open
Abstract
The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.
Collapse
Affiliation(s)
- Yan-Jiun Lee
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Nan Dai
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Stephanie I Müller
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Chudi Guan
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Mackenzie J Parker
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Morgan E Fraser
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Shannon E Walsh
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Janani Sridar
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Andrew Mulholland
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Krutika Nayak
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Zhiyi Sun
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Yu-Cheng Lin
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Donald G Comb
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Katherine Marks
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Reyaz Gonzalez
- Chemistry Department, University of Massachusetts Boston, 100 William T. Morrissey Blvd. Boston, MA02125, USA
| | - Daniel P Dowling
- Chemistry Department, University of Massachusetts Boston, 100 William T. Morrissey Blvd. Boston, MA02125, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, UT 84112, USA
| | - Lana Saleh
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Ivan R Corrêa
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| |
Collapse
|
8
|
Chen TY, Chang WC. A postreplicative C5-cytosine hypermodification triggered by bacteriophage methyltransferase and hydroxylase. Proc Natl Acad Sci U S A 2021; 118:e2109992118. [PMID: 34215668 PMCID: PMC8285969 DOI: 10.1073/pnas.2109992118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|