1
|
Pei Y, Liu F, Zhao Y, Lin H, Huang X. Role of hedgehog signaling in the pathogenesis and therapy of heterotopic ossification. Front Cell Dev Biol 2024; 12:1454058. [PMID: 39364140 PMCID: PMC11447292 DOI: 10.3389/fcell.2024.1454058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that generates ectopic bone in soft tissues. Hedgehog signaling (Hh signaling) is a signaling pathway that plays an important role in embryonic development and involves three ligands: sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh). Hh signaling also has an important role in skeletal development. This paper discusses the effects of Hh signaling on the process of HO formation and describes several signaling molecules that are involved in Hh-mediated processes: parathyroid Hormone-Related Protein (PTHrP) and Fkbp10 mediate the expression of Hh during chondrogenesic differentiation. Extracellular signal-regulated kinase (ERK), GNAs and Yes-Associated Protein (YAP) interact with Hh signaling to play a role in osteogenic differentiation. Runt-Related Transcription Factor 2 (Runx2), Mohawk gene (Mkx) and bone morphogenetic protein (BMP) mediate Hh signaling during both chondrogenic and osteogenic differentiation. This paper also discusses possible therapeutic options for HO, lists several Hh inhibitors and explores whether they could serve as emerging targets for the treatment of HO.
Collapse
Affiliation(s)
- Yiran Pei
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fangzhou Liu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yike Zhao
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Huang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Kot A, Chun C, Martin JH, Wachtell D, Hudson D, Weis M, Marks H, Srivastava S, Eyre DR, Duran I, Zieba J, Krakow D. Loss of the long form of Plod2 phenocopies contractures of Bruck syndrome-osteogenesis imperfecta. J Bone Miner Res 2024; 39:1240-1252. [PMID: 39088537 PMCID: PMC11371901 DOI: 10.1093/jbmr/zjae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Bruck syndrome is an autosomal recessive form of osteogenesis imperfecta caused by biallelic variants in PLOD2 or FKBP10 and is characterized by joint contractures, bone fragility, short stature, and scoliosis. PLOD2 encodes LH2, which hydroxylates type I collagen telopeptide lysines, a critical step for collagen crosslinking. The Plod2 global knockout mouse model is limited by early embryonic lethality, and thus, the role of PLOD2 in skeletogenesis is not well understood. We generated a novel Plod2 mouse line modeling a variant identified in two unrelated individuals with Bruck syndrome: PLOD2 c.1559dupC, predicting a frameshift and loss of the long isoform LH2b. In the mouse, the duplication led to loss of LH2b mRNA as well as significantly reduced total LH2 protein. This model, Plod2fs/fs, survived up to E18.5 although in non-Mendelian genotype frequencies. The homozygous frameshift model recapitulated the joint contractures seen in Bruck syndrome and had indications of absent type I collagen telopeptide lysine hydroxylation in bone. Genetically labeling tendons with Scleraxis-GFP in Plod2fs/fs mice revealed the loss of extensor tendons in the forelimb by E18.5, and developmental studies showed extensor tendons developed through E14.5 but were absent starting at E16.5. Second harmonic generation showed abnormal tendon type I collagen fiber organization, suggesting structurally abnormal tendons. Characterization of the skeleton by μCT and Raman spectroscopy showed normal bone mineralization levels. This work highlights the importance of properly crosslinked type I collagen in tendon and bone, providing a promising new mouse model to further our understanding of Bruck syndrome.
Collapse
Affiliation(s)
- Alexander Kot
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Cora Chun
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Jorge H Martin
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Davis Wachtell
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - David Hudson
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - MaryAnn Weis
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - Haley Marks
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Siddharth Srivastava
- Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - David R Eyre
- Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, United States
| | - Ivan Duran
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Laboratory of Skeletal Biomedicine, IBIMA Plataforma BIONAND and Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, 29071, Spain
| | - Jennifer Zieba
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Deborah Krakow
- Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Pediatrics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
- Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
3
|
Tang Y, Zhuo D, Yu Y, Pu W, Ma Y, Zhang Y, Huang Y, Zhang Q, Tang K, Meng C, Yang D, Bai L, He D, Jin L, Zou H, Xu H, Zhu Q, Wang J, Chen Y, Liu J. Single-cell RNA sequencing reveals the CRTAC1 + population actively contributes to the pathogenesis of spinal ligament degeneration by SPP1 + macrophage. Aging Cell 2024:e14320. [PMID: 39158018 DOI: 10.1111/acel.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Degenerative spinal stenosis is a chronic disease that affects the spinal ligaments and associated bones, resulting in back pain and disorders of the limbs among the elderly population. There are few preventive strategies for such ligament degeneration. We here aimed to establish a comprehensive transcriptomic atlas of ligament tissues to identify high-priority targets for pharmaceutical treatment of ligament degeneration. Here, single-cell RNA sequencing was performed on six degenerative ligaments and three traumatic ligaments to understand tissue heterogeneity. After stringent quality control, high-quality data were obtained from 32,014 cells. Distinct cell clusters comprising stromal and immune cells were identified in ligament tissues. Among them, we noted that collagen degradation associated with CTHRC1+ fibroblast-like cells and calcification linked to CRTAC1+ chondrocyte-like cells were key features of ligament degeneration. SCENIC analysis and further experiments identified ATF3 as a key transcription factor regulating the pathogenesis of CRTAC1+ chondrocyte-like cells. Typically, immune cells infiltrate localized organs, causing tissue damage. In our study, myeloid cells were found to be inflammatory-activated, and SPP1+ macrophages were notably enriched in degenerative ligaments. Further exploration via CellChat analysis demonstrated a robust interaction between SPP1+ macrophages and CRTAC1+ chondrocyte-like cells. Activated by SPP1, ATF3 propels the CRTAC1/MGP/CLU axis, fostering ligament calcification. Our unique resource provides novel insights into possible mechanisms underlying ligament degeneration, the target cell types, and molecules that are expected to mitigate degenerative spinal ligament. We also highlight the role of immune regulation in ligament degeneration and calcification, enhancing our understanding of this disease.
Collapse
Affiliation(s)
- Yulong Tang
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Dachun Zhuo
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Yuexin Yu
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuting Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Kunhai Tang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Chen Meng
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Di Yang
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Lu Bai
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, and Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qi Zhu
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
- Division of Rheumatology, Huashan Hospital, and Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yuanyuan Chen
- Orthopedic Department, Shanghai Sixth People's Hospital, Shanghai Jiaotong University Affiliated, Shanghai, China
- Orthopaedic Department, People's Hospital of Shigatse City, Shigatse, China
| | - Jing Liu
- Shanghai Key Laboratory of Vascular Lesions and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
5
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
6
|
Lv F, Cai X, Ji L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 2022; 111:345-366. [PMID: 35767009 DOI: 10.1007/s00223-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xizhimen South Street No.11, Beijing, 100044, China.
| |
Collapse
|