1
|
Zhang Z, Liang S, Septembre I, Yu J, Huang Y, Liu M, Zhang Y, Xiao M, Malpuech G, Solnyshkov D. Non-Hermitian Delocalization in a Two-Dimensional Photonic Quasicrystal. PHYSICAL REVIEW LETTERS 2024; 132:263801. [PMID: 38996306 DOI: 10.1103/physrevlett.132.263801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 07/14/2024]
Abstract
Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave packet expansion in the Hermitian case. We then discover a new regime, where increasing the non-Hermiticity leads to delocalization, demonstrating that the behavior in non-Hermitian quasicrystals is richer than previously thought.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shun Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | | | - Jiawei Yu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Huang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | | | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | |
Collapse
|
2
|
Mueller AJ, Lindsay AP, Lewis RM, Zhang Q, Narayanan S, Lodge TP, Mahanthappa MK, Bates FS. Particle Dynamics in a Diblock-Copolymer-Based Dodecagonal Quasicrystal and Its Periodic Approximant by X-Ray Photon Correlation Spectroscopy. PHYSICAL REVIEW LETTERS 2024; 132:158101. [PMID: 38682967 DOI: 10.1103/physrevlett.132.158101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024]
Abstract
Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials.
Collapse
Affiliation(s)
- Andreas J Mueller
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Aaron P Lindsay
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60349, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60349, USA
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
Liu XY, Yan XY, Liu Y, Qu H, Wang Y, Wang J, Guo QY, Lei H, Li XH, Bian F, Cao XY, Zhang R, Wang Y, Huang M, Lin Z, Meijer EW, Aida T, Kong X, Cheng SZD. Self-assembled soft alloy with Frank-Kasper phases beyond metals. NATURE MATERIALS 2024; 23:570-576. [PMID: 38297141 DOI: 10.1038/s41563-023-01796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The μ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.
Collapse
Affiliation(s)
- Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA.
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA.
| | - Yuchu Liu
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Qing-Yun Guo
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Xing-Han Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Yu Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Zhiwei Lin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Riken Center for Emergent Matter Science, Wako, Japan
| | - Xian Kong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China.
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA.
| |
Collapse
|
4
|
Cao Y, Scholte A, Prehm M, Anders C, Chen C, Song J, Zhang L, He G, Tschierske C, Liu F. Understanding the Role of Trapezoids in Honeycomb Self-Assembly-Pathways between a Columnar Liquid Quasicrystal and its Liquid-Crystalline Approximants. Angew Chem Int Ed Engl 2024; 63:e202314454. [PMID: 38009676 DOI: 10.1002/anie.202314454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Alexander Scholte
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Marko Prehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Changlong Chen
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangxuan Song
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute for Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Joseph M, Read DJ, Rucklidge AM. Design of Linear Block Copolymers and ABC Star Terpolymers That Produce Two Length Scales at Phase Separation. Macromolecules 2023; 56:7847-7859. [PMID: 37841536 PMCID: PMC10569105 DOI: 10.1021/acs.macromol.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Quasicrystals (materials with long-range order but without the usual spatial periodicity of crystals) were discovered in several soft matter systems in the last 20 years. The stability of quasicrystals has been attributed to the presence of two prominent length scales in a specific ratio, which is 1.93 for the 12-fold quasicrystals most commonly found in soft matter. We propose design criteria for block copolymers such that quasicrystal-friendly length scales emerge at the point of phase separation from a melt, basing our calculations on the Random Phase Approximation. We consider two block copolymer families: linear chains containing two different monomer types in blocks of different lengths, and ABC star terpolymers. In all examples, we are able to identify parameter windows with the two length scales having a ratio of 1.93. The models that we consider that are simplest for polymer synthesis are, first, a monodisperse ALBASB melt and, second, a model based on random reactions from a mixture of AL, AS, and B chains: both feature the length scale ratio of 1.93 and should be relatively easy to synthesize.
Collapse
Affiliation(s)
- Merin Joseph
- School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
| | - Daniel J. Read
- School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|
6
|
Jun T, Park H, Jeon S, Ahn H, Jang WD, Lee B, Ryu DY. Apex hydrogen bonds in dendron assemblies modulate close-packed mesocrystal structures. NANOSCALE 2022; 14:16936-16943. [PMID: 36345976 DOI: 10.1039/d2nr05458b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The close-packed mesocrystal structures from soft-matter assemblies have recently received attention due to their structural similarity to atomic crystals, displaying various sphere-packing Frank-Kasper (FK) and quasicrystal structures. Herein, diverse mesocrystal structures are explored in second-generation dendrons (G2-X) designed with identical wedges, in which the terminal functionalities X = CONH2 and CH2NH2 represent two levels of the strong and weak hydrogen-bonding apexes, respectively. The cohesive interactions at the core apex, referred to as the core interactions, are effectively modulated by forming heterogeneous hydrogen bonds between these two functional units. For the dendron assemblies compositionally close to each pure component of G2-CONH2 and G2-CH2NH2, their own FK A15 and C14 phases dominate other phases, respectively. We show the existence of the wide-range FK σ including the dodecagonal quasicrystal (DDQC) phases from the dendron mixtures between G2-CONH2 and G2-CH2NH2, providing an experimental phase sequence of A15-σ-DDQC-C14 as the core interactions are alleviated. Intriguingly, the temperature dependence of particle sizes shows that the high plateau values of particle sizes are maintained equivalently until each threshold temperature (Tth), followed by a prompt decrease above the Tth. A decrease in Tth by alleviating the core interactions and its composition dependence suggest that the more size-dispersed particles, the more susceptibility to chain exchange with increasing temperature. Our results on the formation of supramolecular dendron assemblies provide a guide to understand the core-interaction-dependent mesocrystal structures toward the fundamental principle underlying the temperature dependence of their particle sizes.
Collapse
Affiliation(s)
- Taesuk Jun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyungju Ahn
- Industry Technology Convergence Centre, Pohang Accelerator, Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
7
|
Archer AJ, Dotera T, Rucklidge AM. Rectangle-triangle soft-matter quasicrystals with hexagonal symmetry. Phys Rev E 2022; 106:044602. [PMID: 36397536 DOI: 10.1103/physreve.106.044602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Aperiodic (quasicrystalline) tilings, such as Penrose's tiling, can be built up from, e.g., kites and darts, squares and equilateral triangles, rhombi- or shield-shaped tiles, and can have a variety of different symmetries. However, almost all quasicrystals occurring in soft matter are of the dodecagonal type. Here we investigate a class of aperiodic tilings with hexagonal symmetry that are based on rectangles and two types of equilateral triangles. We show how to design soft-matter systems of particles interacting via pair potentials containing two length scales that form aperiodic stable states with two different examples of rectangle-triangle tilings. One of these is the bronze-mean tiling, while the other is a generalization. Our work points to how more general (beyond dodecagonal) quasicrystals can be designed in soft matter.
Collapse
Affiliation(s)
- Andrew J Archer
- Department of Mathematical Sciences and Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Tomonari Dotera
- Department of Physics, Kindai University, 3-4-1 Kowakae Higashi, Osaka 577-8502, Japan
| | | |
Collapse
|
8
|
Mueller AJ, Lindsay AP, Jayaraman A, Weigand S, Lodge TP, Mahanthappa MK, Bates FS. Tuning Diblock Copolymer Particle Packing Symmetry with Variable Molecular Weight Core-Homopolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas J. Mueller
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 United States
| | - Aaron P. Lindsay
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 United States
| | - Ashish Jayaraman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 United States
| | - Steven Weigand
- DND-CAT, Advanced Photon Source, 9700 South Cass Ave, Argonne, Illinois 60439-4857, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 United States
| |
Collapse
|
9
|
Inverse ISAsomes in Bio-Compatible Oils—Exploring Formulations in Squalane, Triolein and Olive Oil. NANOMATERIALS 2022; 12:nano12071133. [PMID: 35407249 PMCID: PMC9000821 DOI: 10.3390/nano12071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
In contrast to their more common counterparts in aqueous solutions, inverse ISAsomes (internally self-assembled somes/particles) are formulated as kinetically stabilised dispersions of hydrophilic, lyotropic liquid-crystalline (LC) phases in non-polar oils. This contribution reports on their formation in bio-compatible oils. We found that it is possible to create inverse hexosomes, inverse micellar cubosomes (Fd3m) and an inverse emulsified microemulsion (EME) in excess squalane with a polyethylene glycol alkyl ether as the primary surfactant forming the LC phase and to stabilise them with hydrophobised silica nanoparticles. Furthermore, an emulsified -phase and inverse hexosomes were formed in excess triolein with the triblock-copolymer Pluronic® P94 as the primary surfactant. Stabilisation was achieved with a molecular stabiliser of type polyethylene glycol (PEG)-dipolyhydroxystearate. For the inverse hexosomes in triolein, the possibility of a formulation without any additional stabiliser was explored. It was found that a sufficiently strong stabilisation effect was created by the primary surfactant alone. Finally, triolein was replaced with olive oil which also led to the successful formation of inverse hexosomes. As far as we know, there exists no previous contribution about inverse ISAsomes in complex oils such as triolein or plant oils, and the existence of stabiliser-free (i.e., self-stabilising) inverse hexosomes has also not been reported until now.
Collapse
|
10
|
Percec V, Wang S, Huang N, Partridge BE, Wang X, Sahoo D, Hoffman DJ, Malineni J, Peterca M, Jezorek RL, Zhang N, Daud H, Sung PD, McClure ER, Song SL. An Accelerated Modular-Orthogonal Ni-Catalyzed Methodology to Symmetric and Nonsymmetric Constitutional Isomeric AB 2 to AB 9 Dendrons Exhibiting Unprecedented Self-Organizing Principles. J Am Chem Soc 2021; 143:17724-17743. [PMID: 34637302 DOI: 10.1021/jacs.1c08502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five libraries of natural and synthetic phenolic acids containing five AB3, ten constitutional isomeric AB2, one AB4, and one AB5 were previously synthesized and reported by our laboratory in 5 to 11 steps. They were employed to construct seven libraries of self-assembling dendrons, by divergent generational, deconstruction, and combined approaches, enabling the discovery of a diversity of supramolecular assemblies including Frank-Kasper phases, soft quasicrystals, and complex helical organizations, some undergoing deracemization in the crystal state. However, higher substitution patterns within a single dendron were not accessible. Here we report three libraries consisting of 30 symmetric and nonsymmetric constitutional isomeric phenolic acids with unprecedented sequenced patterns, including two AB2, three AB3, eight AB4, five AB5, six AB6, three AB7, two AB8, and one AB9 synthesized by accelerated modular-orthogonal Ni-catalyzed borylation and cross-coupling. A single etherification step with 4-(n-dodecyloxy)benzyl chloride transformed all these phenolic acids, of interest also for other applications, into self-assembling dendrons. Despite this synthetic simplicity, they led to a diversity of unprecedented self-organizing principles: lamellar structures of interest for biological membrane mimics, helical columnar assemblies from rigid-solid angle dendrons forming Tobacco Mosaic Virus-like assemblies, columnar organizations from adaptable-solid angle dendrons forming disordered micellar-like nonhelical columns, columns from supramolecular spheres, five body-centered cubic phases displaying supramolecular orientational memory, rarely encountered in previous libraries forming predominantly Frank-Kasper phases, and two Frank-Kasper phases. Lessons from these self-organizing principles, discovered within a single generation of self-assembling dendrons, may help elaborate design principles for complex helical and nonhelical organizations of synthetic and biological matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shitao Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Benjamin E Partridge
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xuefeng Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David J Hoffman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jagadeesh Malineni
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ryan L Jezorek
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Na Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hina Daud
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paul D Sung
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emily R McClure
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Se Lin Song
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
11
|
Jun T, Park H, Jeon S, Jo S, Ahn H, Jang WD, Lee B, Ryu DY. Mesoscale Frank-Kasper Crystal Structures from Dendron Assembly by Controlling Core Apex Interactions. J Am Chem Soc 2021; 143:17548-17556. [PMID: 34653334 DOI: 10.1021/jacs.1c07313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single-component polymeric materials open up a great potential for self-assembly into mesoscale complex crystal structures that are known as Frank-Kasper (FK) phases. Predicting the packing structures of the soft-matter spheres, however, remains a challenge even when the molecular design is precisely known. Here, we investigate the role of the molecules' enthalpic interaction in determining the low-symmetry crystal structures. To this end, we synthesize architecturally asymmetric dendrons by varying their apex functionalities and examine the packing structures of the second-generation (G2) dendritic wedges. Our work shows that weakening the hydrogen bonding of the dendron apex makes the particles softer and smaller, and leads to the formation of various FK structures at lower temperatures, including the new observation of a FK C14 phase in the cone-shaped dendron systems. As a consequence of the free energy balance between the particle's interfacial tension and the chain's stretching, various packing structures are mainly tuned by designing the hydrogen bonding interaction.
Collapse
Affiliation(s)
- Taesuk Jun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seungyun Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyungju Ahn
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
12
|
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|