1
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Luo X, Wang X, Zhang L, Du A, Deng Z, Jiang M, He X. Importance of aspartic acid side chain carboxylate-arginine interaction in substrate selection of arginine 2,3-aminomutase BlsG. Protein Sci 2023; 32:e4584. [PMID: 36721314 PMCID: PMC9926467 DOI: 10.1002/pro.4584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
The fungicide nucleoside blasticidin S features a β-arginine, a moiety seldom revealed in the structure of natural products. BlsG, a radical SAM arginine-2,3-aminomutase from the blasticidin S biosynthetic pathway, displayed promiscuous activity to three basic amino acids. Here in this study, we demonstrated that BlsG showed high preference toward its natural substrate arginine. The combined structural modeling, steady-state kinetics, and mutational analyses lead to the detailed understanding of the substrate recognition of BlsG. A single mutation of T340D changed the substrate preference of BlsG leading to a little more preference to lysine than arginine. On the basis of our understanding of the substrate selection of BlsG and bioinformatic analysis, we propose that the D…D motif locationally corresponding to D293 and D330 of KAM is characteristic of lysine 2,3-aminomutase while the corresponding D…T motif is characteristic of arginine 2,3-aminomutase. The study may provide a simple way to discern the arginine 2,3-aminomutase and thus lead to the discovery of new natural compounds with β-arginine moiety.
Collapse
Affiliation(s)
- Xiangkun Luo
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiankun Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lina Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Li H, Zhao J, Ding W, Zhang Q. Glucuronyl C4 dehydrogenation by the radical SAM enzyme BlsE involved in blasticidin S biosynthesis. Chem Commun (Camb) 2022; 58:3561-3564. [PMID: 35199117 DOI: 10.1039/d1cc07132g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we report functional investigation of the radical S-adenosylmethionine enzyme BlsE by using cytosylglucuronamide (CGM), which is the amide analog of cytosylglucuronic acid (CGA), an intermediate involved in blasticidin S biosynthesis. We showed that, instead of decarboxylation of CGA reported previously, BlsE catalyzes C4'-dehydrogenation of CGM, and the resulting ketone is acted on by an aminotransferase BlsH to install the C4'-amino group, which uses L-Asp as the amino donor.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Junfeng Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Lee YH, Hou X, Chen R, Feng J, Liu X, Ruszczycky MW, Gao JM, Wang B, Zhou J, Liu HW. Radical S-Adenosyl Methionine Enzyme BlsE Catalyzes a Radical-Mediated 1,2-Diol Dehydration during the Biosynthesis of Blasticidin S. J Am Chem Soc 2022; 144:4478-4486. [PMID: 35238201 DOI: 10.1021/jacs.1c12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The biosynthesis of blasticidin S has drawn attention due to the participation of the radical S-adenosyl methionine (SAM) enzyme BlsE. The original assignment of BlsE as a radical-mediated, redox-neutral decarboxylase is unusual because this reaction appears to serve no biosynthetic purpose and would need to be reversed by a subsequent carboxylation step. Furthermore, with the exception of BlsE, all other radical SAM decarboxylases reported to date are oxidative in nature. Careful analysis of the BlsE reaction, however, demonstrates that BlsE is not a decarboxylase but instead a lyase that catalyzes the dehydration of cytosylglucuronic acid (CGA) to form cytosyl-4'-keto-3'-deoxy-d-glucuronic acid, which can rapidly decarboxylate nonenzymatically in vitro. Analysis of substrate isotopologs, fluorinated analogues, as well as computational models based on X-ray crystal structures of the BlsE·SAM (2.09 Å) and BlsE·SAM·CGA (2.62 Å) complexes suggests that BlsE catalysis likely proceeds via direct elimination of water from the CGA C4' α-hydroxyalkyl radical as opposed to 1,2-migration of the C3'-hydroxyl prior to dehydration. Biosynthetic and mechanistic implications of the revised assignment of BlsE are discussed.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xueli Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ridao Chen
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiahai Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Wu L, Zhang Q, Deng Z, Yu Y. From solo to duet, intersections of natural product assembly with self-resistance. Nat Prod Rep 2022; 39:919-925. [PMID: 34989738 DOI: 10.1039/d1np00064k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2021Self-resistance mechanisms adopted by natural product producers have long been recognized and studied as a standalone system separated from the assembly machinery. However, as more examples of self-resistance have been characterized in detail, it has been revealed that self-resistance could associate with the assembly machinery to fulfill the task of biosynthesis. This review summarizes different self-resistance mechanisms showing a common feature: intersection with natural product assembly. Furthermore, their possible evolutionary origin and synthetic biology applications are discussed.
Collapse
Affiliation(s)
- Linrui Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Qian Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Prediction of the Iron–Sulfur Binding Sites in Proteins Using the Highly Accurate Three-Dimensional Models Calculated by AlphaFold and RoseTTAFold. INORGANICS 2021. [DOI: 10.3390/inorganics10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AlphaFold and RoseTTAFold are deep learning-based approaches that predict the structure of proteins from their amino acid sequences. Remarkable success has recently been achieved in the prediction accuracy of not only the fold of the target protein but also the position of its amino acid side chains. In this article, I question the accuracy of these methods to predict iron–sulfur binding sites. I analyze three-dimensional models calculated by AlphaFold and RoseTTAFold of Fe–S–dependent enzymes, for which no structure of a homologous protein has been solved experimentally. In all cases, the amino acids that presumably coordinate the cluster were gathered together and facing each other, which led to a quite accurate model of the Fe–S cluster binding site. Yet, cysteine candidates were often involved in intramolecular disulfide bonds, and the number and identity of the protein amino acids that should ligate the cluster were not always clear. The experimental structure determination of the protein with its Fe–S cluster and in complex with substrate/inhibitor/product is still needed to unambiguously visualize the coordination state of the cluster and understand the conformational changes occurring during catalysis.
Collapse
|
7
|
Liu J, Zhao Y, Fu ZQ, Liu F. Monooxygenase LaPhzX is Involved in Self-Resistance Mechanisms during the Biosynthesis of N-Oxide Phenazine Myxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13524-13532. [PMID: 34735148 DOI: 10.1021/acs.jafc.1c05206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-resistance genes are deployed by many microbial producers of bioactive natural products to avoid self-toxicity. Myxin, a di-N-oxide phenazine produced by Lysobacter antibioticus OH13, is toxic to many microorganisms and tumor cells. Here, we uncovered a self-defense strategy featuring the antibiotic biosynthesis monooxygenase (ABM) family protein LaPhzX for myxin degradation. The gene LaPhzX is located in the myxin biosynthetic gene cluster (LaPhz), and its deletion resulted in bacterial mutants that are more sensitive to myxin. In addition, the LaPhzX mutants showed increased myxin accumulation and reduction of its derivative, compound 4, compared to the wild-type strain. Meanwhile, in vitro biochemical assays demonstrated that LaPhzX significantly degraded myxin in the presence of nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). In addition, heterologous expression of LaPhzX in Xanthomonas oryzae pv. oryzae and Escherichia coli increased their resistance to myxin. Overall, our work illustrates a monooxygenase-mediated self-resistance mechanism for phenazine antibiotic biosynthesis.
Collapse
Affiliation(s)
- Jiayu Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety─State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety─State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Fengquan Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety─State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|