1
|
Vrabič N, Fakin A, Tekavčič Pompe M. Spectrum and frequencies of extraocular features reported in CEP290-associated ciliopathy - A systematic review. J Fr Ophtalmol 2024; 47:104232. [PMID: 39213781 DOI: 10.1016/j.jfo.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the CEP290 gene may result in a broad spectrum of diseases, ranging from lethal neonatal syndromes to isolated retinopathy. A detailed review of the clinical spectrum with the incidence of affected extraocular systems has not yet been published. A review of published papers was carried out to provide a comprehensive report on systemic signs and symptoms associated with CEP290 ciliopathies and to explore the genotype-phenotype correlation. Genetic and clinical data were collected on patients with biallelic variants in the CEP290 gene and the extraocular tissues affected. Genotype-phenotype analysis was performed. Two hundred thirty-five patients were included in the analysis. The most frequently reported organs affected, after the eye, were the central nervous system (82.6%, 194/235), followed by the kidney (53.2%, 125/235), skeletal system (15.3% 36/235), and a large spectrum of other, less frequently reported clinical manifestations. Patients with two variants that together predictably resulted in a low amount of CEP290 protein showed a significant association with having two or more extraocular organ systems affected. This is the most extensive report to date on patients with CEP290-ciliopathy and affected extraocular tissues. Based on these findings and previous publications, systemic screening is proposed, together with a clinical pathway for patients with CEP290-related ciliopathy.
Collapse
Affiliation(s)
- N Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - A Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - M Tekavčič Pompe
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Ka HI, Cho M, Kwon SH, Mun SH, Han S, Kim MJ, Yang Y. IK is essentially involved in ciliogenesis as an upstream regulator of oral-facial-digital syndrome ciliopathy gene, ofd1. Cell Biosci 2023; 13:195. [PMID: 37898820 PMCID: PMC10612314 DOI: 10.1186/s13578-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The cilia are microtubule-based organelles that protrude from the cell surface. Abnormalities in cilia result in various ciliopathies, including polycystic kidney disease (PKD), Bardet-Biedl syndrome (BBS), and oral-facial-digital syndrome type I (OFD1), which show genetic defects associated with cilia formation. Although an increasing number of human diseases is attributed to ciliary defects, the functions or regulatory mechanisms of several ciliopathy genes remain unclear. Because multi ciliated cells (MCCs) are especially deep in vivo, studying ciliogenesis is challenging. Here, we demonstrate that ik is essential for ciliogenesis in vivo. RESULTS In the absence of ik, zebrafish embryos showed various ciliopathy phenotypes, such as body curvature, abnormal otoliths, and cyst formation in the kidney. RNA sequencing analysis revealed that ik positively regulated ofd1 expression required for cilium assembly. In fact, depletion of ik resulted in the downregulation of ofd1 expression with ciliary defects, and these ciliary defects in ik mutants were rescued by restoring ofd1 expression. Interestingly, ik affected ciliogenesis particularly in the proximal tubule but not in the distal tubule in the kidney. CONCLUSIONS This study demonstrates the role of ik in ciliogenesis in vivo for the first time. Loss of ik in zebrafish embryos displays various ciliopathy phenotypes with abnormal ciliary morphology in ciliary tissues. Our findings on the ik-ofd1 axis provide new insights into the biological function of ik in clinical ciliopathy studies in humans.
Collapse
Affiliation(s)
- Hye In Ka
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Mina Cho
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, South Korea
| | - Se Hwan Mun
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Min Jung Kim
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| | - Young Yang
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| |
Collapse
|
3
|
Geng C, Liu S, Wang J, Wang S, Zhang W, Rong H, Cao Y, Wang S, Li Z, Zhang Y. Targeting the cochlin/SFRP1/CaMKII axis in the ocular posterior pole prevents the progression of nonpathologic myopia. Commun Biol 2023; 6:884. [PMID: 37644183 PMCID: PMC10465513 DOI: 10.1038/s42003-023-05267-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Myopia is a major public health issue. However, interventional modalities for nonpathologic myopia are limited due to its complicated pathogenesis and the lack of precise targets. Here, we show that in guinea pig form-deprived myopia (FDM) and lens-induced myopia (LIM) models, the early initiation, phenotypic correlation, and stable maintenance of cochlin protein upregulation at the interface between retinal photoreceptors and retinal pigment epithelium (RPE) is identified by a proteomic analysis of ocular posterior pole tissues. Then, a microarray analysis reveals that cochlin upregulates the expression of the secreted frizzled-related protein 1 (SFRP1) gene in human RPE cells. Moreover, SFRP-1 elevates the intracellular Ca2+ concentration and activates Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling in a simian choroidal vascular endothelial cell line, and elicits vascular endothelial cell dysfunction. Furthermore, genetic knockdown of the cochlin gene and pharmacological blockade of SFRP1 abrogates the reduced choroidal blood perfusion and prevents myopia progression in the FDM model. Collectively, this study identifies a novel signaling axis that may involve cochlin in the retina, SFRP1 in the RPE, and CaMKII in choroidal vascular endothelial cells and contribute to the pathogenesis of nonpathologic myopia, implicating the potential of cochlin and SFRP1 as myopia interventional targets.
Collapse
Affiliation(s)
- Chao Geng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Siyi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Jindan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Sennan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Weiran Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Hua Rong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, 730000, Lanzhou, Gansu Province, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China.
| |
Collapse
|
4
|
First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host. Sci Rep 2023; 13:3822. [PMID: 36882485 PMCID: PMC9992438 DOI: 10.1038/s41598-023-30537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing and maintenance of the body balance in teleost fish. During their formation, control over, e.g., morphology and carbonate polymorph is influenced by complex insoluble collagen-like protein and soluble non-collagenous protein assemblages; many of these proteins are incorporated into their aragonite crystal structure. However, in the fossil record these proteins are considered lost through diagenetic processes, hampering studies of past biomineralization mechanisms. Here we report the presence of 11 fish-specific proteins (and several isoforms) in Miocene (ca. 14.8-14.6 Ma) phycid hake otoliths. These fossil otoliths were preserved in water-impermeable clays and exhibit microscopic and crystallographic features indistinguishable from modern representatives, consistent with an exceptionally pristine state of preservation. Indeed, these fossil otoliths retain ca. 10% of the proteins sequenced from modern counterparts, including proteins specific to inner ear development, such as otolin-1-like proteins involved in the arrangement of the otoliths into the sensory epithelium and otogelin/otogelin-like proteins that are located in the acellular membranes of the inner ear in modern fish. The specificity of these proteins excludes the possibility of external contamination. Identification of a fraction of identical proteins in modern and fossil phycid hake otoliths implies a highly conserved inner ear biomineralization process through time.
Collapse
|
5
|
Huang S, Qian S. Advances in otolith-related protein research. Front Neurosci 2022; 16:956200. [PMID: 35958995 PMCID: PMC9361852 DOI: 10.3389/fnins.2022.956200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Otoliths are biological crystals formed by a layer of calcium carbonate crystal that adhere to the ciliary surface of the utricular and saccular receptors in the vestibule of all vertebrates inner ear, enabling the utricle and saccule to better perceive the changes in linear and gravitational acceleration. However, the molecular etiology of otolith related diseases is still unclear. In this review, we have summarized the recent findings and provided an overview of the proteins that play important roles in otolith formation and maintenance (Otoconin-90, Otolin-1, Otolith Matrix Protein-1, Cochlin, Otogelin, α-Tectorin, β-Tectorin, Otopetrin-1, and Otopetrin-2, PMCA2, etc.), providing new insight for the prevention and management of benign paroxysmal positional vertigo (BPPV) with basis for otolith-related proteins as potential biomarkers of vestibular disease.
Collapse
Affiliation(s)
- Shouju Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuxia Qian
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Shuxia Qian,
| |
Collapse
|