1
|
Qian L, Mohanty P, Jayaraman A, Mittal J, Zhu X. Specific residues and conformational plasticity define the substrate specificity of short-chain dehydrogenases/reductases. J Biol Chem 2024; 300:105596. [PMID: 38145745 PMCID: PMC10827548 DOI: 10.1016/j.jbc.2023.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Short-chain dehydrogenases/reductases (SDRs) are one of the most prevalent enzyme families distributed among the sequenced microorganisms. Despite the presence of a conserved catalytic tetrad and high structural similarity, these enzymes exhibit different substrate specificities. The insufficient knowledge regarding the amino acids underlying substrate specificity hinders the understanding of the SDRs' roles in diverse and significant biological processes. Here, we performed bioinformatic analysis, molecular modeling, and mutagenesis studies to identify the key residues that regulate the substrate specificities of two homologous microbial SDRs (i.e., DesE and KduD). Further, we investigated the impact of altering the physicochemical properties of these amino acids on enzyme activity. Interestingly, molecular dynamics simulations also suggest a critical role of enzyme conformational flexibility in substrate recognition and catalysis. Overall, our findings improve the understanding of microbial SDR substrate specificity and shed light on future rational design of more efficient and effective biocatalysts.
Collapse
Affiliation(s)
- Liangyu Qian
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA; Department of Biomedical Engineering, Texas A&M University, College Station, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA; Department of Chemistry, Texas A&M University, College Station, USA; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, USA
| | - Xuejun Zhu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, USA.
| |
Collapse
|
2
|
Lin X, Huang L, Liang H, Hou C, Ling X, Chen Y, Yang P, Wu Q, Zhao H, Wu S, Zhan R, Ma D, Yang J. Genome-wide identification and functional characterization of borneol dehydrogenases in Wurfbainia villosa. PLANTA 2023; 258:69. [PMID: 37608037 DOI: 10.1007/s00425-023-04221-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
MAIN CONCLUSION Genome-wide screening of short-chain dehydrogenases/reductases (SDR) family reveals functional diversification of borneol dehydrogenase (BDH) in Wurfbainia villosa. Wurfbainia villosa is an important medicinal plant, the fruits of which accumulate abundant terpenoids, especially bornane-type including borneol and camphor. The borneol dehydrogenase (BDH) responsible for the conversion of borneol to camphor in W. villosa remains unknown. BDH is one member of short-chain dehydrogenases/reductases (SDR) family. Here, a total of 115 classical WvSDR genes were identified through genome-wide screening. These WvSDRs were unevenly distributed on different chromosomes. Seven candidate WvBDHs based on phylogenetic analysis and expression levels were selected for cloning. Of them, four BDHs can catalyze different configurations of borneol and other monoterpene alcohol substrates to generate the corresponding oxidized products. WvBDH1 and WvBDH2, preferred (+)-borneol to (-)-borneol, producing the predominant ( +)-camphor. WvBDH3 yielded approximate equivalent amount of (+)-camphor and (-)-camphor, in contrast, WvBDH4 generated exclusively (+)-camphor. The metabolic profiles of the seeds showed that the borneol and camphor present were in the dextrorotatory configuration. Enzyme kinetics and expression pattern in different tissues suggested WvBDH2 might be involved in the biosynthesis of camphor in W. villosa. All results will increase the understanding of functional diversity of BDHs.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Linxuan Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huilin Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chen Hou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510006, People's Republic of China
- Guangdong Academy of Forestry, Guangzhou, 510006, People's Republic of China
| | - Xuli Ling
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yuanxia Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Peng Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qingwen Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Haiying Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Sirong Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Dongming Ma
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Jinfen Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Volatile Organic Compounds from Pythium oligandrum Play a Role in Its Parasitism on Plant-Pathogenic Pythium myriotylum. Appl Environ Microbiol 2023; 89:e0203622. [PMID: 36744963 PMCID: PMC9973004 DOI: 10.1128/aem.02036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The oomycete Pythium oligandrum is a soil-inhabiting parasite and predator of both fungi and oomycetes, and uses hydrolytic enzymes extensively to penetrate and hydrolyze its host or prey. Other mechanisms have been studied less, and we investigated the contribution of P. oligandrum-produced volatile organic compounds (VOCs) to parasitism. The growth-inhibiting activity of P. oligandrum VOCs was tested on Pythium myriotylum-a host or prey of P. oligandrum-coupled with electron microscopy, and biochemical and transcriptomic analyses. The P. oligandrum-produced VOCs reduced P. myriotylum growth by 80% and zoospore levels by 60%. Gas chromatography-mass spectrometry (GC-MS) identified 23 VOCs, and methyl heptenone, d-limonene, 2-undecanone, and 1-octanal were potent inhibitors of P. myriotylum growth and led to increased production of reactive oxygen species at a concentration that did not inhibit P. oligandrum growth. Exposure to the P. oligandrum VOCs led to shrinkage of P. myriotylum hyphae and lysis of the cellular membranes and organelles. Transcriptomics of P. myriotylum exposed to the P. oligandrum VOCs at increasing levels of growth inhibition initially showed a strong upregulation of putative detoxification-related genes that was not maintained later. The inhibition of P. myriotylum growth continued immediately after the exposure to the VOCs was discontinued and led to the reduced infection of its plant hosts. The VOCs produced by P. oligandrum could be another factor alongside hydrolytic enzymes contributing to its ecological role as a microbial parasite in particular ecological niches such as in soil, and may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations. IMPORTANCE Microbe-microbe interactions in nature are multifaceted, with multiple mechanisms of action, and are crucial to how plants interact with microbes. Volatile organic compounds (VOCs) have diverse functions, including contributing to parasitism in ecological interactions and potential applications in biocontrol. The microbial parasite P. oligandrum is well known for using hydrolytic enzymes as part of its parasitism. We found that P. oligandrum VOCs reduced the growth of, and caused major damage to, the hyphae of P. myriotylum (a host or prey of P. oligandrum). Transcriptomic analyses of P. myriotylum exposed to the VOCs revealed the upregulation of genes potentially involved in an attempt to detoxify the VOCs. The inhibitory effects of the VOCs had a knock-on effect by reducing the virulence of P. myriotylum toward its plant hosts. The P. oligandrum VOCs could contribute to its ecological role as a microbial parasite. The VOCs analyzed here may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations.
Collapse
|
4
|
Ullah R, Zhu B, Kakar KU, Nawaz Z, Mushtaq M, Durrani TS, Islam ZU, Nawaz F. Micro-synteny conservation analysis revealed the evolutionary history of bacterial biphenyl degradation pathway. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:494-505. [PMID: 35560986 DOI: 10.1111/1758-2229.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds have been enlisted by the United States Environmental Protection Agency (USEPA) and the European Union (EU) as pollutants of priority concern. The biphenyl degradation pathway plays an essential role in prokaryote polychlorinated biphenyls degradation. Our understanding of prokaryotic pathways and their evolution has dramatically increased in recent years with the advancements in prokaryotic genome sequencing and analysis tools. In this work, we applied bioinformatics tools to study the evolution of the biphenyl degradation pathway focusing on the phylogeny and initiation of four representative species (Burkholderia xenovorans LB400, Polaromonas naphthalenivorans CJ2, Pseudomonas putida F1 and Rhodococcus jostii RHA1). These species contained partial or full concatenated genes from bph gene cluster (i.e. bphRbphA1A2A3A4BCKHJID). The aim was to establish this pathway's origin and development mode in the prokaryotic world. Genomic screening revealed that many bacterial species possess genes for the biphenyl degradation pathway. However, the micro-synteny conservation analysis indicated that massive gene recruitment events might have occurred during the evolution of the biphenyl degradation pathway. Combining with the phylogenetic positions, this work points to the evolutionary process of acquiring the biphenyl degradation pathway by different fragments through horizontal gene transfer in these bacterial groups. This study reports the first-ever evidence of the birth of this pathway in the represented species.
Collapse
Affiliation(s)
- Raqeeb Ullah
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Zarqa Nawaz
- Department of Botany, University of Central Punjab, Rawalpindi, Pakistan
| | - Muhammd Mushtaq
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Taimoor Shah Durrani
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Zia Ul Islam
- Department of Civil and Environmental Engineering, The University of Toledo, Toledo, OH, USA
| | - Faheem Nawaz
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|