1
|
Tang Y, Hou M, He Q, Luo G. Designing Bimetallic Nanoparticle Catalysts via Tailored Surface Segregation. NANO LETTERS 2025. [PMID: 39898460 DOI: 10.1021/acs.nanolett.4c05961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bimetallic nanoparticles serve as a vital class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their structural evolution under operational conditions as well as their optimal design principles remains elusive. In this study, we unveil a prevalent surface segregation phenomenon in approximately 100 platinum-group-element-based bimetallic nanoparticles through molecular dynamics simulations and derive a thermodynamic descriptor to predict this behavior. Building on the generality and predictability of surface segregation, we propose leveraging this phenomenon to intentionally enrich the nanoparticle surface with noble-metal atoms, thereby significantly reducing their usage while maintaining high catalytic activity and stability. To validate this strategy, we investigate dozens of platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis using first-principles calculations. Through a systematic examination of the catalytic sites on nanoparticle surfaces, we eventually identify several candidates featuring a stable Pt-enriched surface and superior catalytic activity, confirming the feasibility of this approach.
Collapse
Affiliation(s)
- Yaxin Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, 117575, Singapore
| | - Mingao Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, 117575, Singapore
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Luo C, Wan K, Wang J, Li B, Yang D, Ming P, Zhang C. A review of ordered PtCo 3 catalyst with higher oxygen reduction reaction activity in proton exchange membrane fuel cells. J Colloid Interface Sci 2025; 679:165-190. [PMID: 39447461 DOI: 10.1016/j.jcis.2024.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
This review is devoted to the potential advantages of ordered alloy catalysts in proton exchange membrane fuel cells (PEMFCs), specifically focusing on the development of the low Pt content, high activity, and durability ordered PtCo3 catalyst. Due to the sluggish oxygen reduction reaction (ORR) kinetics and poor durability, the overall performance of the fuel cell is affected, and its application and promotion are limited. To address this issue, researchers have explored various synthetic strategies, such as element doping, morphology adjusting, structure controlling, ordering and support/metal interaction enhancement. This article extensively discussed the Pt related ORR catalysts and follows an in-depth analysis of ordered PtCo3. The introduction briefly discusses the direction of development of fuel cell catalysts and frontier progress, including theoretical mechanism, practical preparation, and Pt-containing electrode structures, etc. The subsequent chapter focuses on the Pt-Co catalyst, the evolution process of Pt alloy to Pt-Co alloy and the improvement scheme are introduced. The next chapter describes the properties of PtCo3. Although the ordered PtCo3 catalyst has a wide range of applicability due to low cost and high activity catalyst. However, besides the common agglomeration and sintering problems of Pt-Co alloy, its commercial application still faces unique problems of oversized crystal size, phase segregation, ordering transformation and transition metal dissolution. Therefore, in Chapter 4, this overview provides some possible improvement methods for three specific functions: crystal refinement, enhancing the effect of support and active substances, and anti-dissolution.
Collapse
Affiliation(s)
- Chuanqi Luo
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Kechuang Wan
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Jue Wang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Bing Li
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Daijun Yang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Pingwen Ming
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Cunman Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| |
Collapse
|
3
|
Jiang A, Chen C, Feng J, Li Q, Liu W, Dong M. Boosting electrocatalytic hydrogen evolution via partial oxidation of rhenium through cobalt modification in nanoalloy structure. J Colloid Interface Sci 2025; 677:617-625. [PMID: 39154453 DOI: 10.1016/j.jcis.2024.08.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Although the theoretical electrocatalytic activity of rhenium (Re) for the hydrogen evolution reaction is comparable to that of platinum, the experimental performance of reported rhenium-based electrocatalysts remains unsatisfactory. Herein, we report a highly efficient and stable electrocatalyst composed of rhenium and cobalt (Co) nanoalloy embedded in nitrogen-doped carbon film (Re3Co2@NCF). The Re3Co2@NCF electrocatalyst exhibited remarkable hydrogen evolution performance, with an overpotential as low as 30 ± 3 mV to reach a current density of 10 mA cm-2. In addition, the Re3Co2@NCF demonstrated exceptional stability over several days at a current density of 150 mA cm-2. Theoretical calculations revealed that alloying cobalt with rhenium altered the electronic structure of the metals, causing partial oxidation of the superficial metal atoms. This modification provided a balance for various intermediates' adsorption and desorption, thereby boosting the intrinsic activity of rhenium for hydrogen evolution reaction. This work improves the electrocatalytic performance of rhenium to its theoretical activity, suggesting a promising future for rhenium-based electrocatalysts.
Collapse
Affiliation(s)
- Anning Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China; Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jijun Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark.
| |
Collapse
|
4
|
Gao Y, Liu H, Wang X, Liu X, Shan B, Chen R. Spatially Confined Alloying of Pt Accelerates Mass Transport for Fuel Cell Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405748. [PMID: 39248683 DOI: 10.1002/smll.202405748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Pt-based alloy with high mass activity and durability is highly desired for proton exchange membrane fuel cells, yet a great challenge remains due to the high mass transport resistance near catalysts with lowering Pt loading. Herein, an extensible approach employing atomic layer deposition to accurately introduce a gas-phase metal precursor into platinum nanoparticles (NPs) pre-filled mesoporous channels is reported, achieved by controlling both the deposition site and quantity. Following the spatially confined alloying treatment, the prepared PtSn alloy catalyst within mesopores demonstrates a small size and homogeneous distribution (2.10 ± 0.53 nm). The membrane electrode assembly with mesoporous carbon-supported PtSn alloy catalyst achieves a high initial mass activity of 0.85 Amg Pt - 1 ${\mathrm{mg}}_{\mathrm{Pt}}^{-1}$ at 0.9 V, which is attributed to the smallest local oxygen transport resistance (3.68 S m-1) ever reported. The mass activity of the catalyst only decreases by 11% after 30000 cycles of accelerated durability test, representing superior full-cell durability among the reported Pt-based alloy catalysts. The enhanced activity and durability are attributed to the decreased adsorption energy of oxygen intermediates on Pt surface and the strong electronic interaction between Pt and Sn inhibiting Pt dissolution.
Collapse
Affiliation(s)
- Yuxin Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Hang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xintian Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Xiao Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
5
|
Lv H, Liu B. Multidimensionally ordered mesoporous intermetallics: Frontier nanoarchitectonics for advanced catalysis. Chem Soc Rev 2024; 53:11321-11333. [PMID: 39470228 DOI: 10.1039/d4cs00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Ordered intermetallics contribute to a unique class of catalyst materials due to their rich atomic features. Further engineering of ordered intermetallics at a mesoscopic scale is of great importance to expose more active sites and introduce new functions. Recently, multidimensionally ordered mesoporous intermetallic (MOMI) nanoarchitectonics, which subtly integrate atomically ordered intermetallics and mesoscopically ordered mesoporous structures, have held add-in synergies that not only enhance catalytic activity and stability but also optimize catalytic selectivity. In this tutorial review, we have summarized the latest progress in the rational design, targeted synthesis, and catalytic applications of MOMIs, with a special focus on the findings of our group. Three strategies, including concurrent template route, self-template route, and dealloying route, are discussed in detail. Furthermore, physicochemical properties and catalytic performances for several important reactions are also described to highlight the remarkable activity, high stability, and controllable selectivity of MOMI nanoarchitectonics. Finally, we conclude with a summary and explore future perspectives in the field to contribute to wider applications.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Chen S, Bao D, Zhang L, Xu Y, Peng Y, Liu J, Li T, Zhou X, Yan C, Qian T. Ligand Effect-Induced Electronic Structure Manipulation of Media-Entropy Alloy for Remarkable Stability over 50,000 Cycles in Oxygen Reduction. Inorg Chem 2024. [PMID: 39561406 DOI: 10.1021/acs.inorgchem.4c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Modulating the "trade-off" between activity and durability of Pd-based alloys while eliminating the dissolution of the nonprecious metal element issue is highly significant for the advancement of commercializing anion-exchange membrane fuel cells (AEMFCs). Herein, by harmonizing composition and ligand effects and targeting the stability concerns of Pd-based alloys, we propose PdRhNi ternary medium-entropy-alloy (MEA) networks (PdRhNi ANs) as exceptionally efficient oxygen reduction reaction (ORR) electrocatalysts via ligand effect. The results of theoretical calculations provide compelling evidence that the ligand effect of Ni in PdRhNi ANs, which can endow an inductive effect to reshape the electronic configuration to induce a reduced energy barrier in the rate-determining steps, optimizes the adsorption energy of O-related intermediates and lowers the d-band center of metal species, collectively boosting the anti-CO capacity and the ORR efficiency. Consequently, the as-made PdRhNi ANs not only demonstrate significantly enhanced electrocatalytic properties with a half-wave potential of 0.85 V and excellent resistance to CO toxicity, in contrast to those of commercial Pt/C and binary counterparts, but also exhibit a negligible half-wave potential decline after 50,000 cycle stability examination. More excitingly, the homemade AEMFC with a PdRhNi AN air cathode delivers a higher power density of 109 mW cm-2, surpassing that of the PdRh AN-based battery, highlighting promising prospects for implementing MEA materials with ligand engineering in AEMFC environments.
Collapse
Affiliation(s)
- Sijie Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Dingwen Bao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yue Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yukun Peng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
7
|
Song S, Hu J, Wang C, Luo M, Wang X, Zhai F, Zheng J. Pt 3(CoNi) Ternary Intermetallic Nanoparticles Immobilized on N-Doped Carbon Derived from Zeolitic Imidazolate Frameworks for Oxygen Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4775. [PMID: 39410345 PMCID: PMC11477947 DOI: 10.3390/ma17194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.
Collapse
Affiliation(s)
- Shiqi Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhua Hu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chupeng Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingsheng Luo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxia Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengxia Zhai
- Sushui Energy Technology (Shanghai) Co., Ltd., Shanghai 200444, China
| | - Jianyong Zheng
- Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
8
|
Luo L, Chen M, Wang Q. Kinetics-Driven Crystal Facet Evolution Mechanism of Atomically Ordered Intermetallic PtFe Nanocubes toward Electrochemical Catalysis. Inorg Chem 2024; 63:15451-15459. [PMID: 39114933 DOI: 10.1021/acs.inorgchem.4c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Crystal structure engineering in nanoparticles has been regarded as a vital method in catalyst development and design. Herein, PtFe nanocubes, manufactured with ordered PtFe intermetallic structure and a desired facet of {202}, have been successfully prepared via the combination of selective deposition strategy and spatial barrier effect. In-situ X-ray photoelectron spectroscopy found that the growth of the high-index facet and formation of the nanocube for o-PtFe-202 materials arise from the surface Fe2+ modification stabilized effect and the selective deposition of Cl-, respectively. Moreover, density functional theory calculations and X-ray adsorption spectroscopies further proved that the improved oxygen reduction reaction activity and stability of o-PtFe-202 mainly originate from the synergistic effect of the desired high-index facet, ordered crystal structure, and resulting optimal d-band center of Pt. As expected, the o-PtFe-202 exhibits excellent mass activity (2.48 mA·ugPt-1) and specific activity (7.78 mA·cm-2), with only a 7.3% decrease in mass activity after 30 000 cycles.
Collapse
Affiliation(s)
- Leqing Luo
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, Guiyang 550025, China
| | - Meida Chen
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, Guiyang 550025, China
| | - Qingmei Wang
- Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guizhou, Guiyang 550025, China
| |
Collapse
|
9
|
Cheng H, Gui R, Chen C, Liu S, Cao X, Yin Y, Ma R, Wang W, Zhou T, Zheng X, Chu W, Xie Y, Wu C. Semimetal-triggered covalent interaction in Pt-based intermetallics for fuel-cell electrocatalysis. Natl Sci Rev 2024; 11:nwae233. [PMID: 39119219 PMCID: PMC11308177 DOI: 10.1093/nsr/nwae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Platinum-based intermetallic compounds (IMCs) play a vital role as electrocatalysts in a range of energy and environmental technologies, such as proton exchange membrane fuel cells. However, the synthesis of IMCs necessitates recombination of ordered Pt-M metallic bonds with high temperature driving, which is generally accompanied by side effects for catalysts' structure and performance. In this work, we highlight that semimetal atoms can trigger covalent interactions to break the synthesis-temperature limitation of platinum-based intermetallic compounds and benefit fuel-cell electrocatalysis. Attributed to partial fillings of p-block in semimetal elements, the strong covalent interaction of d-p π backbonding can benefit the recombination of ordered Pt-M metallic bonds (PtGe, PtSb and PtTe) in the synthesis process. Moreover, this covalent interaction in metallic states can further promote both electron transport and orbital fillings of active sites in fuel cells. The semimetal-Pt IMCs were obtained with a temperature 300 K lower than that needed for the synthesis of metal-Pt intermetallic compounds and reached the highest CO-tolerant oxygen reduction activity (0.794 A mg-1 at 0.9 V and 5.1% decay under CO poisoning) among reported electrocatalysts. We anticipate that semimetal-Pt IMCs will offer new insights for the rational design of advanced electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Renjie Gui
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Chen Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Si Liu
- Chemistry Experiment Teaching Center, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Xuemin Cao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Yifan Yin
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Ruize Ma
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Wenjie Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tianpei Zhou
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230029, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230026, China
| |
Collapse
|
10
|
Huang L, Niu H, Xia C, Li FM, Shahid Z, Xia BY. Integration Construction of Hybrid Electrocatalysts for Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404773. [PMID: 38829366 DOI: 10.1002/adma.202404773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
There is notable progress in the development of efficient oxygen reduction electrocatalysts, which are crucial components of fuel cells. However, these superior activities are limited by imbalanced mass transport and cannot be fully reflected in actual fuel cell applications. Herein, the design concepts and development tracks of platinum (Pt)-nanocarbon hybrid catalysts, aiming to enhance the performance of both cathodic electrocatalysts and fuel cells, are presented. This review commences with an introduction to Pt/C catalysts, highlighting the diverse architectures developed to date, with particular emphasis on heteroatom modification and microstructure construction of functionalized nanocarbons based on integrated design concepts. This discussion encompasses the structural evolution, property enhancement, and catalytic mechanisms of Pt/C-based catalysts, including rational preparation recipes, superior activity, strong stability, robust metal-support interactions, adsorption regulation, synergistic pathways, confinement strategies, ionomer optimization, mass transport permission, multidimensional construction, and reactor upgrading. Furthermore, this review explores the low-barrier or barrier-free mass exchange interfaces and channels achieved through the impressive multidimensional construction of Pt-nanocarbon integrated catalysts, with the goal of optimizing fuel cell efficiency. In conclusion, this review outlines the challenges associated with Pt-nanocarbon integrated catalysts and provides perspectives on the future development trends of fuel cells and beyond.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- School of Chemical Sciences, The University of Auckland (UOA), Auckland, 1010, New Zealand
| | - Huiting Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zaman Shahid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
11
|
Liu Y, Li N, Su K, Du J, Guo R. Arginine-Rich Peptide-Rhodium Nanocluster@Reduced Graphene Oxide Composite as a Highly Selective and Active Uricase-like Nanozyme for the Degradation of Uric Acid and Inhibition of Urate Crystal. Inorg Chem 2024; 63:13602-13612. [PMID: 38973094 DOI: 10.1021/acs.inorgchem.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 μg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 μg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ning Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Kang Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jiamei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
12
|
Liu H, Yin Y, Cao X, Cheng H, Xie Y, Wu C. A Redox Flow Battery-Integrated Rechargeable H 2/O 2 Fuel Cell. J Am Chem Soc 2024; 146:5274-5282. [PMID: 38363827 DOI: 10.1021/jacs.3c11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The practical application of the H2/O2 proton-exchange membrane fuel cell (PEMFC) is being greatly limited by the use of high-cost Pt as electrode catalysts. Furthermore, the H2/O2 PEMFC is nonrechargeable and thus precludes kinetics energy recovery when equipped on electric vehicles and peak power regulation when combined to power grids. Here, we demonstrate a rechargeable H2/O2 PEMFC through embedding a redox flow battery into a conventional H2/O2 PEMFC. This flow battery employs H2/O2 reactive redox pairs such as NO3-/NO-Br2/Br- and H4SiW12O40/H5SiW12O40 whose redox potentials are as close as possible to those of O2/H2O and H2/H2O, respectively, so that the chemical potential losses during their reactions with O2 at the cathode and H2 at the anode were minimized. More importantly, the electrochemical reversibility allows the H2/O2 reacted redox pairs to be easily regenerated through fuel cell discharging on catalyst-free carbon electrodes at a low overpotential and brings in the fuel cell both chemical and electrical rechargeability, thereby realizing integrated functions of electricity generation- storage as well as efficient operation (achieving an open-circuit potential of 0.96 V and a peak power density of 0.57 W/cm2, which are comparable to a conventional H2/air PEMFC) with catalyst-free carbon electrodes.
Collapse
Affiliation(s)
- Hongfei Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Yifan Yin
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Xuemin Cao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui Province, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
13
|
Yang L, Bai J, Zhang N, Jiang Z, Wang Y, Xiao M, Liu C, Zhu S, Xu ZJ, Ge J, Xing W. Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells. Angew Chem Int Ed Engl 2024; 63:e202315119. [PMID: 38129317 DOI: 10.1002/anie.202315119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd-O dipoles into Pt3 Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm-2 and superior current density of 562.2 mA cm-2 at 0.8 V than DOE target for heavy-duty vehicles in H2 -air mode suggest the great potential of Gd-O-Pt3 Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt -1 ) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt -1 ), due to the weakened Pt-Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.
Collapse
Affiliation(s)
- Liting Yang
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Jingsen Bai
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Nanshu Zhang
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zheng Jiang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Siyuan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Junjie Ge
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
14
|
Zhang L, Liu T, Liu X, Li S, Zhang X, Luo Q, Ding T, Yao T, Zhang W. Highly dispersed ultrafine PtCo alloy nanoparticles on unique composite carbon supports for proton exchange membrane fuel cells. NANOSCALE 2024; 16:2868-2876. [PMID: 38235504 DOI: 10.1039/d3nr05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The design of highly efficient and robust platinum-based electrocatalysts is pivotal for proton exchange membrane fuel cells (PEMFC). One of the long-standing issues for PEMFC is the rapid deactivation of the catalyst under working conditions. Here, we report a simple synthesis strategy for ultrafine PtCo alloy nanoparticles loaded on a unique carbon support derived from a zeolitic imidazolate framework-67 (ZIF-67) and Ketjen Black (KB) composite, exhibiting a remarkable catalytic performance toward the oxygen reduction reaction (ORR) and PEMFC. Benefitting from the N-doping and wide pore size distribution of the composite carbon supports, the growth of PtCo nanoparticles can be evenly restricted, leading to a uniform distribution. The Pt-integrated catalyst delivers an outstanding electrochemical performance with a mass activity that is 8.6 times higher than that of the commercial Pt/C catalyst. Impressively, the accelerated durability test (ADT) demonstrates that the hybrid carbon support can significantly enhance the durability. Theoretical simulations highlight the synergistic contribution between the supports and the PtCo nanoparticles. Moreover, hydrogen-oxygen fuel cells assembled with the catalyst exhibited a high power density of 1.83 W cm-2 at 4 A cm-2. These results provide a new opportunity to design advanced catalysts for PEMFC.
Collapse
Affiliation(s)
- Lingling Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Tong Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Sicheng Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029, P. R. China.
- Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
15
|
Chen Z, Liu J, Yang B, Lin M, Molochas C, Tsiakaras P, Shen P. Two-stage confinement derived small-sized highly ordered L1 0-PtCoZn for effective oxygen reduction catalysis in PEM fuel cells. J Colloid Interface Sci 2023; 652:388-404. [PMID: 37604051 DOI: 10.1016/j.jcis.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Intermetallic ordered PtCo is effective for high oxygen reduction reaction (ORR) activity and stability. However, preparing small-sized, highly ordered PtM alloys is still challenging. Herein, we report a controlled two-stage confinement strategy, in which highly ordered PtCoZn/NC nanoparticles of 5.3 nm size were prepared in a scalable process. The contradiction between the high ordering degree with the small particle size as well as the atomic migration with the space confinement was well resolved. An outstanding PEMFC performance was achieved for L10-PtCoZn/NC with a high mass activity (MA) of 1.21 A/mgPt at 0.9 ViR-free, 80.1 % MA retention after 30 k cycles in H2-O2 operation, and a high mass-specific power density of 8.24 W mg-1Pt in H2-Air operation with a slight loss of cell voltage@0.8 A cm-2 of 28 mV after 30 k cycles. The high performance can be ascribed to the high Pt area exposure, the enhanced Pt-Co coupling, and the prevented agglomeration in the mesoporous carbon wall. Overall, this strategy may contribute to the commercialization of fuel cells.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Jia Liu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Bin Yang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Mingjie Lin
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Costas Molochas
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, 1 Sekeri Str., 383 34 Volos, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, 1 Sekeri Str., 383 34 Volos, Greece.
| | - Peikang Shen
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China.
| |
Collapse
|
16
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
17
|
Gui R, Cheng H, Wang M, Tai X, Zhang H, Liu C, Cao X, Chen C, Ge M, Wang H, Zheng X, Chu W, Lin Y, Xie Y, Wu C. Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307661. [PMID: 37994613 DOI: 10.1002/adma.202307661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt3 Ga (Pm3 ¯ $\bar{3}$ m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt3 Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt3 Ga (Pm3 ¯ $\bar{3}$ m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mgPt -1 and 5.36 mA cm-2 , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.
Collapse
Affiliation(s)
- Renjie Gui
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Han Cheng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Minghao Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolin Tai
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Congyan Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuemin Cao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chen Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Min Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yue Lin
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| |
Collapse
|
18
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Zhou F, Ruan Y, Zhu M, Gao X, Guo W, Liu X, Wang W, Chen M, Wu G, Yao T, Zhou H, Wu Y. Coupling Single-Atom Sites and Ordered Intermetallic PtM Nanoparticles for Efficient Catalysis in Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302328. [PMID: 37431211 DOI: 10.1002/smll.202302328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 07/12/2023]
Abstract
The design of an efficient catalytic system with low Pt loading and excellent stability for the acidic oxygen reduction reaction is still a challenge for the extensive application of proton-exchange membrane fuel cells. Here, a gas-phase ordered alloying strategy is proposed to construct an effective synergistic catalytic system that blends PtM intermetallic compounds (PtM IMC, M = Fe, Cu, and Ni) and dense isolated transition metal sites (M-N4 ) on nitrogen-doped carbon (NC). This strategy enables Pt nanoparticles and defects on the NC support to timely trap flowing metal salt without partial aggregation, which is attributed to the good diffusivity of gaseous transition metal salts with low boiling points. In particular, the resulting Pt1 Fe1 IMC cooperating with Fe-N4 sites achieves cooperative oxygen reduction with a half-wave potential up to 0.94 V and leads to a high mass activity of 0.51 A mgPt -1 and only 23.5% decay after 30 k cycles, both of which exceed DOE 2025 targets. This strategy provides a method for reducing Pt loading in fuel cells by integrating Pt-based intermetallics and single transition metal sites to produce an efficient synergistic catalytic system.
Collapse
Affiliation(s)
- Fangyao Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yaner Ruan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Mengzhao Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wenxin Guo
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Wenyu Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Min Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
20
|
Gao Y, Thakur N, Uchiyama T, Cao W, Yamamoto K, Watanabe T, Kumar M, Sato R, Teranishi T, Imai H, Sakurai Y, Uchimoto Y. Investigating Degradation Mechanisms in PtCo Alloy Catalysts: The Role of Co Content and a Pt-Rich Shell Using Operando High-Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37908070 DOI: 10.1021/acsami.3c11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Low Pt-based alloy catalysts are regarded as an efficient strategy in achieving high activity for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). However, the desired durability for the low Pt-based catalysts, such as the Pt1Co3 catalyst, has still been considered a great challenge for PEMFCs. In this study, we investigate sub-2.5 nm PtxCoy alloy catalysts with varying Co content and Pt1Co3@Pt core-shell (CS) nanostructure catalysts obtained through a simple displacement reaction. The Pt1Co3@Pt_H catalysts showed a high mass activity (MA) of 1.46 A/mgPt at 0.9 V and 14% MA loss after 10k accelerated degradation test (ADT) cycles, which suggested the improved stability compared with Pt1Co3 catalysts (52% MA loss). To clarify the degradation mechanism, operando high-energy resolution fluorescence detection X-ray absorption spectroscopy (XAS) was applied in addition to conventional advanced measurement techniques, including operando conventional XAS, to analyze the electronic state and structure changes during operation potentials. We found that introducing Co improves the catalysts' activity mainly from the strain effect, but an excessive amount of Co leads to increased Pt-oxidation, which accelerates the degradation of the catalysts. The Pt1Co3@Pt_H catalyst shows high tolerance to Pt-oxidation, benefiting both the stability and activity. Our findings demonstrate an in-depth understanding of the degradation mechanism and the importance of designing PtCo CS nanostructures with optimal Co content for enhanced performance in PEMFCs.
Collapse
Affiliation(s)
- Yunfei Gao
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Neha Thakur
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Weijie Cao
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kentaro Yamamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Watanabe
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mukesh Kumar
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideto Imai
- Fuel Cell Cutting-Edge Research Center Technology Research Association, Aomi, Koto, Tokyo 135-0064, Japan
| | - Yoshiharu Sakurai
- Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Wang G, Zhao W, Mansoor M, Liu Y, Wang X, Zhang K, Xiao C, Liu Q, Mao L, Wang M, Lv H. Recent Progress in Using Mesoporous Carbon Materials as Catalyst Support for Proton Exchange Membrane Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2818. [PMID: 37947664 PMCID: PMC10649975 DOI: 10.3390/nano13212818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Developing durable oxygen reduction reaction (ORR) electrocatalysts is essential to step up the large-scale applications of proton exchange membrane fuel cells (PEMFCs). Traditional ORR electrocatalysts provide satisfactory activity, yet their poor durability limits the long-term applications of PEMFCs. Porous carbon used as catalyst support in Pt/C is vulnerable to oxidation under high potential conditions, leading to Pt nanoparticle dissolution and carbon corrosion. Thus, integrating Pt nanoparticles into highly graphitic mesoporous carbons could provide long-term stability. This Perspective seeks to reframe the existing approaches to employing Pt alloys and mesoporous carbon-integrated ORR electrocatalysts to improve the activity and stability of PEMFCs. The unusual porous structure of mesoporous carbons promotes oxygen transport, and graphitization provides balanced stability. Furthermore, the synergistic effect between Pt alloys and heteroatom doping in mesoporous carbons not only provides a great anchoring surface for catalyst nanoparticles but also improves the intrinsic activity. Furthermore, the addition of Pt alloys into mesoporous carbon optimizes the available surface area and creates an effective electron transfer channel, reducing the mass transport resistance. The long-term goals for fuel-cell-powered cars, especially those designed for heavy-duty use, are well aligned with the results shown when this hybrid material is used in PEMFCs to improve performance and durability.
Collapse
Affiliation(s)
- Guanxiong Wang
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| | - Wei Zhao
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Majid Mansoor
- College of Energy Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China;
| | - Yinan Liu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Xiuyue Wang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Kunye Zhang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Cailin Xiao
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| | - Quansheng Liu
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Min Wang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Haifeng Lv
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| |
Collapse
|
22
|
Yu S, Bi L, Xie X, Lu J, Chen A, Jiang H. Facile synthesis of L1 0-PtFe/C intermetallic catalysts with superior catalytic durability for the oxygen reduction reaction. Chem Commun (Camb) 2023; 59:12270-12273. [PMID: 37750926 DOI: 10.1039/d3cc03742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
An o-PtFe/C intermetallic catalyst was prepared by a facile thermal reduction method with the average particle size of only 6.6 nm in the presence of urea. The loss of mass activity is only 25.9% after 50 000 cycles. This work provides guidance on the suppression of grain coarsening for high-temperature synthesis of Pt-based intermetallic catalysts.
Collapse
Affiliation(s)
- Shengwei Yu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Liyuan Bi
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Xiang Xie
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Jiyuan Lu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Aiping Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Haibo Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
23
|
Lv H, Wang Y, Sun L, Yamauchi Y, Liu B. A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles. Nat Protoc 2023; 18:3126-3154. [PMID: 37710021 DOI: 10.1038/s41596-023-00872-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
Intermetallic nanomaterials consist of two or more metals in a highly ordered atomic arrangement. There are many possible combinations and morphologies, and exploring their properties is an important research area. Their strict stoichiometry requirement and well-defined atom binding environment make intermetallic compounds an ideal research platform to rationally optimize catalytic performance. Making mesoporous intermetallic materials is a further advance; crystalline mesoporosity can expose more active sites, facilitate the mass and electron transfer, and provide the distinguished mesoporous nanoconfinement environment. In this Protocol, we describe how to prepare ordered mesoporous intermetallic nanomaterials with controlled compositions, morphologies/structures and phases by a general concurrent template strategy. In this approach, the concurrent template used is a hybrid of mesoporous platinum or palladium and Korea Advanced Institute of Science and Technology-6 (KIT-6) (meso-Pt/KIT-6 or meso-Pd/KIT-6) that can be transformed by the second precursors under reducing conditions. The second precursor can either be a second metal or a metalloid/non-metal, e.g., boron/phosphorus. KIT-6 is a silica scaffold that is removed using NaOH or HF to form the mesoporous product. Procedures for example catalytic applications include the 3-nitrophenylacetylene semi-hydrogenation reaction, p-nitrophenol reduction reaction and electrochemical hydrogen evolution reaction. The synthetic strategy for preparation of ordered mesoporous intermetallic nanoparticles would take almost 5 d; the physical characterization by electron microscope, X-ray diffraction and inductively coupled plasma-mass spectrometry takes ~2 days and the function characterization depends on the research question, but for catalysis it takes 1-5 h.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Chen J, Dong J, Huo J, Li C, Du L, Cui Z, Liao S. Ultrathin Co-N-C Layer Modified Pt-Co Intermetallic Nanoparticles Leading to a High-Performance Electrocatalyst toward Oxygen Reduction and Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301337. [PMID: 37144456 DOI: 10.1002/smll.202301337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Indexed: 05/06/2023]
Abstract
The development of low platinum-based alloy electrocatalysts is crucial to accelerate the commercialization of fuel cells, yet remains a synthetic challenge and an incompatibility between activity and stability. Herein, a facile procedure to fabricate a high-performance composite that comprises Pt-Co intermetallic nanoparticles (IMNs) and Co, N co-doped carbon (Co-N-C) electrocatalyst is proposed. It is prepared by direct annealing of homemade carbon black-supported Pt nanoparticles (Pt/KB) covered with a Co-phenanthroline complex. During this process, most of Co atoms in the complex are alloyed with Pt to form ordered Pt-Co IMNs, while some Co atoms are atomically dispersed and doped in the framework of superthin carbon layer derived from phenanthroline, which is coordinated with N to form Co-Nx moieties. Moreover, the Co-N-C film obtained from complex is observed to cover the surface of Pt-Co IMNs, which prevent the dissolution and agglomeration of nanoparticles. The composite catalyst exhibits high activity and stability toward oxygen reduction reactions (ORR) and methanol oxidation reactions (MOR), delivering outstanding mass activities of 1.96 and 2.92 A mgPt -1 for ORR and MOR respectively, owing to the synergistic effect of Pt-Co IMNs and Co-N-C film. This study may provide a promising strategy to improve the electrocatalytic performance of Pt-based catalysts.
Collapse
Affiliation(s)
- Jiaxiang Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiangbo Dong
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd. , Guangzhou, 510641, China
| | - Junlang Huo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chaozhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiming Cui
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shijun Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
25
|
Xiang L, Hu Y, Zhao Y, Cao S, Kuai L. Carbon-Supported High-Loading Sub-4 nm PtCo Alloy Electrocatalysts for Superior Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2367. [PMID: 37630951 PMCID: PMC10458021 DOI: 10.3390/nano13162367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Increasing the loading density of nanoparticles on carbon support is essential for making Pt-alloy/C catalysts practical in H2-air fuel cells. The challenge lies in increasing the loading while suppressing the sintering of Pt-alloy nanoparticles. This work presents a 40% Pt-weighted sub-4 nm PtCo/C alloy catalyst via a simple incipient wetness impregnation method. By carefully optimizing the synthetic conditions such as Pt/Co ratios, calcination temperature, and time, the size of supported PtCo alloy nanoparticles is successfully controlled below 4 nm, and a high electrochemical surface area of 93.8 m2/g is achieved, which is 3.4 times that of commercial PtCo/C-TKK catalysts. Demonstrated by electrochemical oxygen reduction reactions, PtCo/C alloy catalysts present an enhanced mass activity of 0.465 A/mg at 0.9 V vs. RHE, which is 2.0 times that of the PtCo/C-TKK catalyst. Therefore, the developed PtCo/C alloy catalyst has the potential to be a highly practical catalyst for H2-air fuel cells.
Collapse
Affiliation(s)
- Linlin Xiang
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Beijing Middle Road, Wuhu 241000, China; (L.X.); (Y.H.)
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yunqin Hu
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Beijing Middle Road, Wuhu 241000, China; (L.X.); (Y.H.)
| | - Yanyan Zhao
- The Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA;
| | - Sufeng Cao
- Aramco Boston Downstream Center, 400 Technology Square, Cambridge, MA 02139, USA;
| | - Long Kuai
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Beijing Middle Road, Wuhu 241000, China; (L.X.); (Y.H.)
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
26
|
Guo H, Li L, Chen Y, Zhang W, Shang C, Cao X, Li M, Zhang Q, Tan H, Nie Y, Gu L, Guo S. Precise Strain Tuning Boosts Electrocatalytic Hydrogen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302285. [PMID: 37248040 DOI: 10.1002/adma.202302285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Strain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain-activity correlation remains a challenge. Herein, Pd-based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o-Pd/Ir-1.2%, o-Pd/Ir-1.7%, and o-Pd/Ir-2.1% NPs). It is demonstrated that the catalytic performances of o-Pd/Ir NPs display a volcano-shaped curve against strains toward the hydrogen evolution reaction (HER). Specifically, o-Pd/Ir-1.7% NPs exhibit superior catalytic performance with a mass activity of 9.38 A mgIr -1 at -0.02 V versus reversible hydrogen electrode, 10.8- and 18.8-fold higher than those of commercial Pt/C and Ir/C, respectively, making it one of the most active HER electrocatalysts reported to date. Density function theory calculations verify that the moderate tensile strain on Ir(111) surfaces plays a pivotal role in optimizing the H binding energy. This work highlights a new strategy for precise control over the surface strain of nanocrystals for more efficient electrocatalysis.
Collapse
Affiliation(s)
- Hongyu Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yan Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenshu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Changshuai Shang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoqing Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yan Nie
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Zhang L, Zhang J, Tan W, Zhong C, Tu Y, Song H, Du L, Liao S, Cui Z. Amorphous TiO x Stabilized Intermetallic Pt 3Ti Nanocatalyst for Methanol Oxidation Reaction. NANO LETTERS 2023. [PMID: 37276263 DOI: 10.1021/acs.nanolett.3c01147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermetallic compounds, featuring atomically ordered structures, have emerged as a class of promising electrocatalysts for fuel cells. However, it remains a formidable challenge to controllably synthesize Pt-based intermetallics during the essential high-temperature annealing process as well as stabilize the nanoparticles (NPs) during the electrocatalytic process. Herein, we demonstrated a Ketjen black supported intermetallic Pt3Ti nanocatalyst coupled with amorphous TiOx species (Pt3Ti-TiOx/KB). The TiOx can not only confine Pt3Ti NPs during the synthesis and electrocatalytic process by a strong metal-oxide interaction but also promote the water dissociation for generating more OH species, thus facilitating the conversion of COad. The Pt3Ti-TiOx/KB showed a significantly enhanced mass activity (2.15 A mgPt-1) for the methanol oxidation reaction, compared with Pt3Ti/KB and Pt/C, and presented an impressively high mass activity retention (∼71%) after the durability test. This work provides an effective strategy of coupling Pt-based intermetallics with functional oxides for developing highly performed electrocatalysts.
Collapse
Affiliation(s)
- Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaxi Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weiquan Tan
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chengzhi Zhong
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanhua Tu
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huiyu Song
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
28
|
You J, Zheng Z, Cheng X, Li H, Fu C, Luo L, Wei G, Shen S, Yan X, Zhang J. Insight into Oxygen Transport in Solid and High-Surface-Area Carbon Supports of Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21457-21466. [PMID: 37070714 DOI: 10.1021/acsami.3c01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding the oxygen transport mechanism through an ionomer film that covered the catalyst surface is essential for reducing local oxygen transport resistance and improving the low Pt-loading proton exchange membrane fuel cell performance. Besides the ionomer material, the carbon supports, upon which ionomers and catalyst particles are dispersed, also play a crucial role in local oxygen transport. Increasing attention has been paid to the effects of carbon supports on local transport, but the detailed mechanism is still unclear. Herein, the local oxygen transports based on conventional solid carbon (SC) and high-surface-area carbon (HSC) supports are investigated by molecular dynamics simulations. It is found that oxygen diffuses through the ionomer film that covered the SC supports via "effective diffusion" and "ineffective diffusion". The former denotes the process by which oxygen diffuses directly from the ionomer surface to the Pt upper surface through small and concentrated regions. In contrast, ineffective diffusion suffers more restrictions by both carbon- and Pt-dense layers, and thus, the oxygen pathways are long and tortuous. The HSC supports exhibit larger transport resistance relative to SC supports due to the existence of micropores. Also, the major transport resistance originates from the carbon-dense layer as it inhibits oxygen from diffusing downward and migrating toward the pore opening, while the oxygen transport inside the pore is facile along the pore's inner surface, which leads to a specific and short diffusion pathway. This work provides insight into oxygen transport behavior with SC and HSC supports, which is the basis for the development of high-performance electrodes with low local transport resistance.
Collapse
Affiliation(s)
- Jiabin You
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhifeng Zheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojing Cheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyuan Li
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- SJTU-Paris Tech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Yu S, Chen L, Cheng N, Lu J, Bi L, Zhang W, Chen A, Jiang H, Li C. Enhanced Oxygen Reduction Reaction Performance by Adsorbed Water on Edge Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21049-21056. [PMID: 37096887 DOI: 10.1021/acsami.3c01470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pt-based alloy nanoparticles have broad application prospects as cathode catalyst materials for proton-exchange membrane fuel cells (PEMFCs). Optimization of the oxygen adsorption energy is crucial to boost the performance of oxygen reduction catalysis. We successfully synthesized well-dispersed Pt1.2Ni tetrahedra and obtained the Pt1.2Ni/C catalyst adopting the one-pot synthetic protocol, which exhibits superb activity and good long-term stability for oxygen reduction reaction (ORR), achieving a mass activity of 1.53 A/mgPt at 0.90 VRHE, which is 12 times higher than that of commercial Pt/C. On combining X-ray photoelectron spectroscopy and density functional theory calculations, abundant water is adsorbed stably on the Pt1.2Ni alloy surface. We find that the intense interaction between the adsorbed O atom and adsorbed water can weaken the adsorption of oxygen, contributing to the ORR performance.
Collapse
Affiliation(s)
- Shengwei Yu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Liyuan Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Na Cheng
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jiyuan Lu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Liyuan Bi
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenhui Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Aiping Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Haibo Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
31
|
Zeng WJ, Wang C, Yin P, Tong L, Yan QQ, Chen MX, Xu SL, Liang HW. Alloying Matters for Ordering: Synthesis of Highly Ordered PtCo Intermetallic Catalysts for Fuel Cells. Inorg Chem 2023; 62:5262-5269. [PMID: 36947415 DOI: 10.1021/acs.inorgchem.3c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L10-type PtCo catalysts with a remarkable ORR performance in fuel cells.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Zhang X, Shi W, Li Y, Zhao W, Han S, Shen W. Pt 3Ti Intermetallic Alloy Formed by Strong Metal–Support Interaction over Pt/TiO 2 for the Selective Hydrogenation of Acetophenone. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xixiong Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Shi
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
33
|
Okatenko V, Loiudice A, Newton MA, Stoian DC, Blokhina A, Chen AN, Rossi K, Buonsanti R. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO 2 Reduction Reaction. J Am Chem Soc 2023; 145:5370-5383. [PMID: 36847799 DOI: 10.1021/jacs.2c13437] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anastasia Blokhina
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
34
|
Cui Z, Liu Q, Zhu J, Wang H, Gao M, Wang W, Yuen MF, Hu J, Chen H, Zou R. Pseudopyrolysis of Metal-Organic Frameworks: A Synchronous Nucleation Mechanism to Synthesize Ultrafine Metal Compound Nanoparticles. NANO LETTERS 2023; 23:1600-1607. [PMID: 36626315 DOI: 10.1021/acs.nanolett.2c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-Organic frameworks (MOFs) are increasingly being investigated for the synthesis of carbon-supported metal-based ultrafine nanoparticles (UNPs). However, the collapse of the carbon framework and aggregation of metal particles in the pyrolysis process have severely hindered their stability and applications. Here, we report the synchronous nucleation pseudopyrolysis of MOFs to confine Fe/FeOx UNPs in intact porous carbon nanorods (IPCNs), revealed by in situ transmission electron microscopy experiments and ex situ structure analysis. The pseudopyrolysis mechanism enables strong physical and chemical confinement effects between UNPs and carbon by moderate thermal kinetics and abundant oxygen defects. Further, this strong confinement is greatly beneficial for subsequent chemical transformations to obtain different Fe-based UNPs and excellent electrochemical performance. As a proof of concept, the as-prepared FeSe UNPs in IPCNs show superior lithium storage performance with an ultrahigh and stable capacity of 815.1 mAh g-1 at 0.1 A g -1 and 379.7 mAh g-1 at 5 A g-1 for 1000 cycles.
Collapse
Affiliation(s)
- Zhe Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qian Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Science, Donghua University, Shanghai 201620, P. R. China
| | - Jinqi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengluan Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wenqing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Muk Fung Yuen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118 P. R. China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
35
|
Sun P, Qiao Z, Wang S, Li D, Liu X, Zhang Q, Zheng L, Zhuang Z, Cao D. Atomically Dispersed Zn-Pyrrolic-N 4 Cathode Catalysts for Hydrogen Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202216041. [PMID: 36478109 DOI: 10.1002/anie.202216041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
To achieve practical application of fuel cell, it is vital to develop highly efficient and durable Pt-free catalysts. Herein, we prepare atomically dispersed ZnNC catalysts with Zn-Pyrrolic-N4 moieties and abundant mesoporous structure. The ZnNC-based anion-exchange membrane fuel cell (AEMFC) presents an ultrahigh peak power density of 1.63 and 0.83 W cm-2 in H2 -O2 and H2 -air (CO2 -free), and also exhibits long-term stability with more than 120 and 100 h for H2 -air (CO2 -free) and H2 -O2 , respectively. Density functional calculations further unveil that the Zn-Pyrrolic-N4 structure is the origin of high activity of as-synthesized ZnNC catalyst, while the Zn-Pyridinic-N4 moiety is inactive for oxygen reduction reaction (ORR), which successfully explain the puzzle why most Zn-metal-organic framework -derived ZnNC catalysts in previous reports did not present good ORR activity because of their Zn-Pyridinic-N4 moieties. This work offers a new route for speeding up development of AEMFCs.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danyang Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuerui Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
36
|
Song TW, Zuo LJ, Zuo M, Liang HW. Breaking trade-off between particle size and ordering degree of intermetallic catalysts for fuel cells. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Zeng WJ, Wang C, Yan QQ, Yin P, Tong L, Liang HW. Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat Commun 2022; 13:7654. [PMID: 36496497 PMCID: PMC9741640 DOI: 10.1038/s41467-022-35457-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a remarkable durability.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
38
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
Affiliation(s)
- Chiara Biz
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - José Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| | - Mauro Fianchini
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
39
|
Cheng H, Xia J, Wang M, Wang C, Gui R, Cao X, Zhou T, Zheng X, Chu W, Wu H, Xie Y, Wu C. Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance. J Am Chem Soc 2022; 144:22018-22025. [DOI: 10.1021/jacs.2c09147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Han Cheng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Minghao Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chun Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Renjie Gui
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuemin Cao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tianpei Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yi Xie
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
40
|
Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc Natl Acad Sci U S A 2022; 119:e2214089119. [PMID: 36322768 PMCID: PMC9659378 DOI: 10.1073/pnas.2214089119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Oxygen reduction reaction (ORR), an essential reaction in metal-air batteries and fuel cells, still faces many challenges, such as exploiting cost-effective nonprecious metal electrocatalysts and identifying their surface catalytic sites. Here we introduce bulk defects, Frank partial dislocations (FPDs), into metallic cobalt to construct a highly active and stable catalyst and demonstrate an atomic-level insight into its surface terminal catalysis. Through thermally dealloying bimetallic carbide (Co3ZnC), FPDs were in situ generated in the final dealloyed metallic cobalt. Both theoretical calculations and atomic characterizations uncovered that FPD-driven surface terminations create a distinctive type of surface catalytic site that combines concave geometry and compressive strain, and this two-in-one site intensively weakens oxygen binding. When being evaluated for the ORR, the catalyst exhibits onset and half-wave potentials of 1.02 and 0.90 V (versus the reversible hydrogen electrode), respectively, and negligible activity decay after 30,000 cycles. Furthermore, zinc-air batteries and H2-O2/air fuel cells built with this catalyst also achieve remarkable performance, making it a promising alternative to state-of-the-art Pt-based catalysts. Our findings pave the way for the use of bulk defects to upgrade the catalytic properties of nonprecious electrocatalysts.
Collapse
|
41
|
Song TW, Xu C, Sheng ZT, Yan HK, Tong L, Liu J, Zeng WJ, Zuo LJ, Yin P, Zuo M, Chu SQ, Chen P, Liang HW. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat Commun 2022; 13:6521. [PMID: 36316330 PMCID: PMC9622856 DOI: 10.1038/s41467-022-34037-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Supported ordered intermetallic compounds exhibit superior catalytic performance over their disordered alloy counterparts in diverse reactions. But the synthesis of intermetallic compounds catalysts often requires high-temperature annealing that leads to the sintering of metals into larger crystallites. Herein, we report a small molecule-assisted impregnation approach to realize the general synthesis of a family of intermetallic catalysts, consisting of 18 binary platinum intermetallic compounds supported on carbon blacks. The molecular additives containing heteroatoms (that is, O, N, or S) can be coordinated with platinum in impregnation and thermally converted into heteroatom-doped graphene layers in high-temperature annealing, which significantly suppress alloy sintering and insure the formation of small-sized intermetallic catalysts. The prepared optimal PtCo intermetallics as cathodic oxygen-reduction catalysts exhibit a high mass activity of 1.08 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.17 W cm-2 in H2-air fuel cells.
Collapse
Affiliation(s)
- Tian-Wei Song
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Cong Xu
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Zhu-Tao Sheng
- grid.440646.40000 0004 1760 6105College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
| | - Hui-Kun Yan
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lei Tong
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Jun Liu
- grid.454811.d0000 0004 1792 7603Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,Anhui Contango New Energy Technology Co., Ltd, Hefei, 230088 China
| | - Wei-Jie Zeng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lu-Jie Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Peng Yin
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Ming Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Sheng-Qi Chu
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Chen
- grid.252245.60000 0001 0085 4987School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
42
|
Wang W, Zhou T, Zhang K, Wang C, Shi X, Wang L, Liu Q, Wang Y, Jiao Q, Ma G, Ye C, Xie Y, Wu X, Chu W, Wu C. Sulfur-induced dynamic reconstruction of iron-nitrogen species for highly active neutral oxygen reduction reactions. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Annealing-temperature-dependent relation between alloying degree, particle size, and fuel cell performance of PtCo catalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Song TW, Chen MX, Yin P, Tong L, Zuo M, Chu SQ, Chen P, Liang HW. Intermetallic PtFe Electrocatalysts for the Oxygen Reduction Reaction: Ordering Degree-Dependent Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202916. [PMID: 35810451 DOI: 10.1002/smll.202202916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Platinum-based atomically ordered alloys (i.e., intermetallic compounds) have distinct advantages over disordered solid solution counterparts in boosting the cathodic oxygen-reduction reaction (ORR) in proton-exchange-membrane fuel cells. Nevertheless, the pivotal role of ordering degree of intermetallic catalysts in promoting ORR performance has been ignored heavily so far, probably owing to the lack of synthetic routes for controlling the ordering degree, especially for preparing highly ordered intermetallic catalysts. Herein, a family of intermetallic PtFe catalysts with similar particle size of 3-4 nm but varied ordering degree in a wide range of 10-70% are prepared. After constructing the PtFe/Pt core/shell structure with around 3 Pt-layer skin, a positive correlation between the ordering degree of the intermetallic catalysts and their ORR activity and durability is identified. Notably, the highly ordered PtFe/Pt catalyst exhibits a high mass activity of 0.92 A mgPt -1 at 0.9 ViR-corrected as cathode catalyst in H2 -O2 fuel cell, with only 24% loss after accelerated durability tests. The ordering degree-dependent performance can be ascribed to the compressive strain effect induced by the intermetallic PtFe core with smaller lattice parameters, and the more thermodynamically stable intermetallic structure compared to disordered alloys.
Collapse
Affiliation(s)
- Tian-Wei Song
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Qi Chu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
45
|
Kabiraz MK, Kim HJ, Hong Y, Chang Q, Choi S. Excess dopant effect in
platinum‐based
alloys toward the oxygen electroreduction reaction. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mrinal Kanti Kabiraz
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
| | - Hee Jin Kim
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
| | - Youngmin Hong
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
| | - Qiaowan Chang
- Department of Chemical Engineering Columbia University New York New York USA
| | - Sang‐Il Choi
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu South Korea
- Department of Hydrogen and Renewable Energy Kyungpook National University Daegu South Korea
| |
Collapse
|
46
|
Liu M, Lu B, Yang G, Yuan P, Xia H, Wang Y, Guo K, Zhao S, Liu J, Yu Y, Yan W, Dong C, Zhang J, Mu S. Concave Pt-Zn Nanocubes with High-Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200147. [PMID: 35199956 PMCID: PMC9036018 DOI: 10.1002/advs.202200147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 06/02/2023]
Abstract
High dosage of expensive Pt to catalyze the sluggish oxygen reduction reaction (ORR) on the cathode severely impedes the commercialization of proton exchange membrane fuel cells. Therefore, it is urgent to cut down the Pt catalyst by efficiently improving the ORR activity while maintaining high durability. Herein, magic concave Pt-Zn nanocubes with high-index faceted Pt skin (Pt78 Zn22 ) are proposed for high-efficiency catalysis toward proton exchange membrane fuel cells. These unique structural features endow the Pt-skin Pt78 Zn22 /KB with a mass activity of 1.18 mA μgPt -1 and a specific activity of 3.64 mA cm-2 for the ORR at 0.9 V (vs RHE). Meanwhile, the H2 -O2 fuel cell assembled by this catalyst delivers an ultrahigh peak power density of ≈1449 mW cm-2 . Both experiments and theoretical calculations show that the electronic structure of the surface is adjusted, thereby shortening the length of the Pt-Pt bond and reducing the adsorption energy of OH*/O* on the Pt surface. This work demonstrates the synergistic effect of the oxidation-resistant metal Zn and the construction of Pt-rich surface engineering. Also, it guides the future development of catalysts for their practical applications in energy conversion technologies and beyond.
Collapse
Affiliation(s)
- Mengli Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Bang‐An Lu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Gege Yang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Pengfei Yuan
- International Joint Research Laboratory for Quantum Functional Materials of Henan Provinceand School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450000P. R. China
| | - Huicong Xia
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Yajin Wang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Kai Guo
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Shuyan Zhao
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Jia Liu
- Shanghai Hydrogen Propulsion Technology Co., Ltd.Shanghai200000P. R. China
| | - Yue Yu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis & Preparative ChemistryJilin UniversityChangchun130000P. R. China
| | - Chung‐Li Dong
- Department of PhysicsTamkang UniversityNew Taipei CityTaiwan
| | - Jia‐Nan Zhang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| |
Collapse
|
47
|
Kabiraz MK, Ruqia B, Kim J, Kim H, Kim HJ, Hong Y, Kim MJ, Kim YK, Kim C, Lee WJ, Lee W, Hwang GH, Ri HC, Baik H, Oh HS, Lee YW, Gao L, Huang H, Paek SM, Jo YJ, Choi CH, Han SW, Choi SI. Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Bibi Ruqia
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hee Jin Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Youngmin Hong
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Mi Ji Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Young Kyoung Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Chan Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Won-Jae Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Wonkyun Lee
- Heterogeneous Catalysis PJT, LG Chem Research Park, Daejeon 34122, Korea
| | - Gyo Hyun Hwang
- Heterogeneous Catalysis PJT, LG Chem Research Park, Daejeon 34122, Korea
| | - Hyeong Cheol Ri
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul 02841, Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Young Wook Lee
- Department of Chemistry Education, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Lei Gao
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Seung Min Paek
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| | - Youn-Jung Jo
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the Nano Century, KAIST, Daejeon 34141, Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
- Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
48
|
Ding H, Wang P, Su C, Liu H, Tai X, Zhang N, Lv H, Lin Y, Chu W, Wu X, Wu C, Xie Y. Epitaxial Growth of Ultrathin Highly Crystalline Pt-Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109188. [PMID: 35077589 DOI: 10.1002/adma.202109188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Structure engineering strategies such as core-shell and hollow nanostructures are effective pathways to improve the utilization of noble metals for catalysis. However, nowadays materials design based on these strategies still largely rely on precious metal templates. Herein, the epitaxial growth of highly crystalline Pt3 Ni overlayer on earth-abundant nickel carbide is reported, forming Ni3 C@Pt3 Ni core-shell nanoparticles with a well-defined interface through a new lattice-match-directed synthetic strategy. Derived from such core-shell nanostructures, ultrathin highly crystalline Pt3 Ni nanocages have an advantageous configuration of oxygen reduction reaction (ORR)-favored facets and inherently high active surface area for the ORR, bringing high mass activity and specific activity as much as 4.71 A mgPt -1 and 5.14 mA cm-2 , which are 26 and 20 times to that of commercial Pt/C, respectively. This novel epitaxial growth of platinum opens up new avenues to rationally design highly active and economical electrocatalysts.
Collapse
Affiliation(s)
- Hui Ding
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Wang
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Caijie Su
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongfei Liu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolin Tai
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Nan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yue Lin
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230026, P. R. China
| | - Yi Xie
- School of Chemistry and Materials Sciences, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230026, P. R. China
| |
Collapse
|