1
|
Shen S, Hong Y, Huang J, Qu X, Sooranna SR, Lu S, Li T, Niu B. Targeting PD-1/PD-L1 in tumor immunotherapy: Mechanisms and interactions with host growth regulatory pathways. Cytokine Growth Factor Rev 2024; 79:16-28. [PMID: 39179486 DOI: 10.1016/j.cytogfr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Xiaosheng Qu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, 169 Changle West Rd, Xi'an 710032, China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China.
| |
Collapse
|
2
|
Ortega MA, Boaru DL, De Leon-Oliva D, Fraile-Martinez O, García-Montero C, Rios L, Garrido-Gil MJ, Barrena-Blázquez S, Minaya-Bravo AM, Rios-Parra A, Álvarez-Mon M, Jiménez-Álvarez L, López-González L, Guijarro LG, Diaz R, Saez MA. PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications. J Mol Med (Berl) 2024; 102:987-1000. [PMID: 38935130 DOI: 10.1007/s00109-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The PD-1/PD-L1 axis is a complex signaling pathway that has an important role in the immune system cells. Programmed cell death protein 1 (PD-1) acts as an immune checkpoint on the T lymphocytes, B lymphocytes, natural killer (NK), macrophages, dendritic cells (DCs), monocytes, and myeloid cells. Its ligand, the programmed cell death 1 ligand (PD-L1), is expressed in the surface of the antigen-presenting cells (APCs). The binding of both promotes the downregulation of the T cell response to ensure the activation to prevent the onset of chronic immune inflammation. This axis in the tumor microenvironment (TME) performs a crucial role in the tumor progression and the escape of the tumor by neutralizing the immune system, the engagement of PD-L1 with PD-1 in the T cell causes dysfunctions, neutralization, and exhaustion, providing the tumor mass production. This review will provide a comprehensive overview of the functions of the PD-1/PD-L1 system in immune function, cancer, and the potential therapeutic implications of the PD-1/PD-L1 pathway for cancer management.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain.
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Laura Rios
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Ana M Minaya-Bravo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de, Asturias University Hospital, Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, 28801, Alcala de Henares, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain.
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain.
- Surgery Service, University Hospital Principe de Asturias, 28801, Alcala de Henares, Spain.
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CIBEREHD, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| |
Collapse
|
3
|
Rodríguez-Rodríguez N, Rosetti F, Crispín JC. CD8 is down(regulated) for tolerance. Trends Immunol 2024; 45:442-453. [PMID: 38782625 DOI: 10.1016/j.it.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Activated CD8+ T cells directly kill target cells. Therefore, the regulation of their function is central to avoiding immunopathology. Mechanisms that curb effector functions in CD4+ and CD8+ T cells are mostly shared, yet important differences occur. Here, we focus on the control of CD8+ T cell activity and discuss the importance of a poorly understood aspect of tolerance that directly impairs engagement of target cells: the downregulation of CD8. We contextualize this process and propose that it represents a key element during CD8+ T cell modulation.
Collapse
Affiliation(s)
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.
| |
Collapse
|
4
|
Hosonuma M, Hirasawa Y, Kuramasu A, Murayama M, Narikawa Y, Toyoda H, Baba Y, Isobe J, Funayama E, Tajima K, Shida M, Hamada K, Tsurui T, Ariizumi H, Ishiguro T, Suzuki R, Ohkuma R, Kubota Y, Horiike A, Sambe T, Tsuji M, Wada S, Kiuchi Y, Kobayashi S, Tsunoda T, Yoshimura K. Nivolumab receptor occupancy on effector regulatory T cells predicts clinical benefit. Cancer Sci 2024; 115:752-762. [PMID: 38254257 PMCID: PMC10920990 DOI: 10.1111/cas.16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Immune checkpoint inhibitor discovery represents a turning point in cancer treatment. However, the response rates of solid tumors remain ~10%-30%; consequently, prognostic and immune-related adverse event (irAE) predictors are being explored. The programmed cell death protein 1 (PD-1) receptor occupancy (RO) of PD-1 inhibitors depends on the number of peripheral blood lymphocytes and their PD-1 expression levels, suggesting that the RO may be related to efficacy and adverse events. As PD-1 inhibition affects each T-cell subset differently, the RO of each cell population must be characterized. However, relevant data have not been reported, and the prognostic relevance of this parameter is not known. In this study, we aimed to clarify the association between the nivolumab RO in each T-cell population and patient prognosis and reveal the development of irAEs in nivolumab-treated patients. Thirty-two patients were included in the study, and the mean follow-up period was 364 days. The nivolumab RO on effector regulatory T cells (eTregs) was significantly lower in the group that presented clinical benefits, and a significant negative association was observed between PD-1 occupancy on eTregs and all-cause mortality. The results suggest that the nivolumab RO on eTregs may be a prognostic factor in PD-1 inhibitor therapy, implying that the inhibition of PD-1/PD-ligand 1 (PD-L1) signaling on eTregs may attenuate antitumor effects.
Collapse
Affiliation(s)
- Masahiro Hosonuma
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
- Division of Medical Pharmacology, Department of Pharmacology, School of MedicineShowa UniversitySetagaya‐KuJapan
- Pharmacological Research CenterShowa UniversitySetagaya‐KuJapan
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Atsuo Kuramasu
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Masakazu Murayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
- Division of Medical Pharmacology, Department of Pharmacology, School of MedicineShowa UniversitySetagaya‐KuJapan
- Pharmacological Research CenterShowa UniversitySetagaya‐KuJapan
- Department of Otorhinolaryngology‐Head and Neck Surgery, School of MedicineShowa UniversitySetagaya‐KuJapan
- Head and Neck Oncology CenterShowa UniversitySetagaya‐KuJapan
| | - Yoichiro Narikawa
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
- Division of Medical Pharmacology, Department of Pharmacology, School of MedicineShowa UniversitySetagaya‐KuJapan
- Pharmacological Research CenterShowa UniversitySetagaya‐KuJapan
- Department of Otorhinolaryngology‐Head and Neck Surgery, School of MedicineShowa UniversitySetagaya‐KuJapan
- Head and Neck Oncology CenterShowa UniversitySetagaya‐KuJapan
- Department of OtorhinolaryngologyFujigaoka HospitalYokohamaJapan
| | - Hitoshi Toyoda
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
- Division of Medical Pharmacology, Department of Pharmacology, School of MedicineShowa UniversitySetagaya‐KuJapan
- Pharmacological Research CenterShowa UniversitySetagaya‐KuJapan
- Department of OtorhinolaryngologyFujigaoka HospitalYokohamaJapan
- Department of Orthopedic Surgery, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Yuta Baba
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Junya Isobe
- Department of Hospital Pharmaceutics, School of PharmacyShowa UniversitySetagaya‐KuJapan
| | - Eiji Funayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Kohei Tajima
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Midori Shida
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Kazuyuki Hamada
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Takehiko Sambe
- Division of Clinical Pharmacology, Department of Pharmacology, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Mayumi Tsuji
- Pharmacological Research CenterShowa UniversitySetagaya‐KuJapan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, School of MedicineShowa UniversitySetagaya‐KuJapan
- Pharmacological Research CenterShowa UniversitySetagaya‐KuJapan
| | - Shinichi Kobayashi
- Head and Neck Oncology CenterShowa UniversitySetagaya‐KuJapan
- Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and TherapeuticsShowa UniversitySetagaya‐KuJapan
- Division of Medical Oncology, Department of Medicine, School of MedicineShowa UniversitySetagaya‐KuJapan
| |
Collapse
|
5
|
Okazaki T, Katakai T. Elucidating molecular and cellular mechanisms of singularity phenomena in immunology. Biophys Physicobiol 2024; 21:e211007. [PMID: 39175858 PMCID: PMC11338679 DOI: 10.2142/biophysico.bppb-v21.s007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 08/24/2024] Open
Affiliation(s)
- Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan
| |
Collapse
|
6
|
Chan W, Cao YM, Zhao X, Schrom EC, Jia D, Song J, Sibener LV, Dong S, Fernandes RA, Bradfield CJ, Smelkinson M, Kabat J, Hor JL, Altan-Bonnet G, Garcia KC, Germain RN. TCR ligand potency differentially impacts PD-1 inhibitory effects on diverse signaling pathways. J Exp Med 2023; 220:e20231242. [PMID: 37796477 PMCID: PMC10555889 DOI: 10.1084/jem.20231242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
Checkpoint blockade revolutionized cancer therapy, but we still lack a quantitative, mechanistic understanding of how inhibitory receptors affect diverse signaling pathways. To address this issue, we developed and applied a fluorescent intracellular live multiplex signal transduction activity reporter (FILMSTAR) system to analyze PD-1-induced suppressive effects. These studies identified pathways triggered solely by TCR or requiring both TCR and CD28 inputs. Using presenting cells differing in PD-L1 and CD80 expression while displaying TCR ligands of distinct potency, we found that PD-1-mediated inhibition primarily targets TCR-linked signals in a manner highly sensitive to peptide ligand quality. These findings help resolve discrepancies in existing data about the site(s) of PD-1 inhibition in T cells while emphasizing the importance of neoantigen potency in controlling the effects of checkpoint therapy.
Collapse
Affiliation(s)
- Waipan Chan
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuqi M. Cao
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward C. Schrom
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dongya Jia
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jian Song
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah V. Sibener
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shen Dong
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A. Fernandes
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Clinton J. Bradfield
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Douguet L, Fert I, Lopez J, Vesin B, Le Chevalier F, Moncoq F, Authié P, Nguyen T, Noirat A, Névo F, Blanc C, Bourgine M, Hardy D, Anna F, Majlessi L, Charneau P. Full eradication of pre-clinical human papilloma virus-induced tumors by a lentiviral vaccine. EMBO Mol Med 2023; 15:e17723. [PMID: 37675835 PMCID: PMC10565635 DOI: 10.15252/emmm.202317723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Human papillomavirus (HPV) infections are the cause of all cervical and numerous oropharyngeal and anogenital cancers. The currently available HPV vaccines, which induce neutralizing antibodies, have no therapeutic effect on established tumors. Here, we developed an immuno-oncotherapy against HPV-induced tumors based on a non-integrative lentiviral vector encoding detoxified forms of the Early E6 and E7 oncoproteins of HPV16 and 18 genotypes, namely, "Lenti-HPV-07". A single intramuscular injection of Lenti-HPV-07 into mice bearing established HPV-induced tumors resulted in complete tumor eradication in 100% of the animals and was also effective against lung metastases. This effect correlated with CD8+ T-cell induction and profound remodeling of the tumor microenvironment. In the intra-tumoral infiltrates of vaccinated mice, the presence of large amounts of activated effector, resident memory, and transcription factor T cell factor-1 (TCF-1)+ "stem-like" CD8+ T cells was associated with full tumor eradication. The Lenti-HPV-07-induced immunity was long-lasting and prevented tumor growth after a late re-challenge, mimicking tumor relapse. Lenti-HPV-07 therapy synergizes with an anti-checkpoint inhibitory treatment and therefore shows promise as an immuno-oncotherapy against established HPV-mediated malignancies.
Collapse
Affiliation(s)
- Laëtitia Douguet
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Ingrid Fert
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Jodie Lopez
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Benjamin Vesin
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Le Chevalier
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fanny Moncoq
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Authié
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Trang‐My Nguyen
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Amandine Noirat
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Névo
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Catherine Blanc
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Maryline Bourgine
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - David Hardy
- Histopathology Platform, Institut PasteurUniversité de ParisParisFrance
| | - François Anna
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Laleh Majlessi
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Charneau
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| |
Collapse
|
8
|
Le Moine M, Azouz A, Sanchez Sanchez G, Dejolier S, Nguyen M, Thomas S, Shala V, Dreidi H, Denanglaire S, Libert F, Vermijlen D, Andris F, Goriely S. Homeostatic PD-1 signaling restrains EOMES-dependent oligoclonal expansion of liver-resident CD8 T cells. Cell Rep 2023; 42:112876. [PMID: 37543948 DOI: 10.1016/j.celrep.2023.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
The co-inhibitory programmed death (PD)-1 signaling pathway plays a major role in the context of tumor-specific T cell responses. Conversely, it also contributes to the maintenance of peripheral tolerance, as patients receiving anti-PD-1 treatment are prone to developing immune-related adverse events. Yet, the physiological role of the PD-1/PDL-1 axis in T cell homeostasis is still poorly understood. Herein, we show that under steady-state conditions, the absence of PD-1 signaling led to a preferential expansion of CD8+ T cells in the liver. These cells exhibit an oligoclonal T cell receptor (TCR) repertoire and a terminally differentiated exhaustion profile. The transcription factor EOMES is required for the clonal expansion and acquisition of this differentiation program. Finally, single-cell transcriptomics coupled with TCR repertoire analysis support the notion that these cells arise locally from liver-resident memory CD8+ T cells. Overall, we show a role for PD-1 signaling in liver memory T cell homeostasis.
Collapse
Affiliation(s)
- Marie Le Moine
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium
| | - Solange Dejolier
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Valdrin Shala
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Hacene Dreidi
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sébastien Denanglaire
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM) and Brightcore, ULB, Brussels, Belgium
| | - David Vermijlen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Andris
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
9
|
Sugiyarto G, Lau D, Hill SL, Arcia-Anaya D, Boulanger DSM, Parkes EE, James E, Elliott T. Reactivation of low avidity tumor-specific CD8 + T cells associates with immunotherapeutic efficacy of anti-PD-1. J Immunother Cancer 2023; 11:e007114. [PMID: 37586767 PMCID: PMC10432680 DOI: 10.1136/jitc-2023-007114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND CD8+ T cells are a highly diverse population of cells with distinct phenotypic functions that can influence immunotherapy outcomes. Further insights on the roles of CD8+ specificities and TCR avidity of naturally arising tumor-specific T cells, where both high and low avidity T cells recognizing the same peptide-major histocompatibility complex (pMHC) coexist in the same tumor, are crucial for understanding T cell exhaustion and resistance to PD-1 immunotherapy. METHODS CT26 models were treated with anti-PD-1 on days 3, 6 and 9 following subcutaneous tumor implantation generating variable responses during early tumor development. Tetramer staining was performed to determine the frequency and avidity of CD8+ T cells targeting the tumor-specific epitope GSW11 and confirmed with tetramer competition assays. Functional characterization of high and low avidity GSW11-specific CD8+ T cells was conducted using flow cytometry and bulk RNA-seq. In vitro cytotoxicity assays and in vivo adoptive transfer experiments were performed to determine the cytotoxicity of high and low avidity populations. RESULTS Treatment success with anti-PD-1 was associated with the preferential expansion of low avidity (Tetlo) GSW11-specific CD8+ T cells with Vβ TCR expressing clonotypes. High avidity T cells (Tethi), if present, were only found in progressing PD-1 refractory tumors. Tetlo demonstrated precursor exhausted or progenitor T cell phenotypes marked by higher expression of Tcf-1 and T-bet, and lower expression of the exhaustion markers CD39, PD-1 and Eomes compared with Tethi, whereas Tethi cells were terminally exhausted. Transcriptomics analyses showed pathways related to TCR signaling, cytotoxicity and oxidative phosphorylation were significantly enriched in Tetlo found in both regressing and progressing tumors compared with Tethi, whereas genes related to DNA damage, apoptosis and autophagy were downregulated. In vitro studies showed that Tetlo exhibits higher cytotoxicity than Tethi. Adoptive transfer of Tetlo showed more effective tumor control than Tethi, and curative responses were achieved when Tetlo was combined with two doses of anti-PD-1. CONCLUSIONS Targeting subdominant T cell responses with lower avidity against pMHC affinity neoepitopes showed potential for improving PD-1 immunotherapy. Future interventions may consider expanding low avidity populations via vaccination or adoptive transfer.
Collapse
Affiliation(s)
- Gessa Sugiyarto
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Doreen Lau
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Samuel Luke Hill
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Arcia-Anaya
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Denise S M Boulanger
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eileen E Parkes
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim Elliott
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Arra A, Lingel H, Pierau M, Brunner-Weinzierl MC. PD-1 limits differentiation and plasticity of Tc17 cells. Front Immunol 2023; 14:1104730. [PMID: 37205114 PMCID: PMC10186197 DOI: 10.3389/fimmu.2023.1104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
Blockade of surface co-inhibitory receptor programmed cell death-1 (PD-1; CD279) has been established as an important immunotherapeutic approach to treat malignancies. On a cellular level, PD-1 is demonstrated to be of particular importance in inhibiting differentiation and effector function of cytotoxic Tc1 cells (CTLs). Nevertheless, the role of PD-1 in modulating interleukin (IL)-17-producing CD8+ T-cells (Tc17 cells), which generally display suppressed cytotoxic nature, is not well understood. To evaluate the impact of PD-1 in Tc17 responses, we examined its functioning using different in vitro and in vivo models. Upon activation of CD8+ T-cells in Tc17 environment, we found that PD-1 was rapidly expressed on the surface of CD8+ T-cells and triggered a T-cell-internal mechanism that inhibited the expression of IL-17 and Tc17-supporting transcription factors pSTAT3 and RORγt. Expression of type17-polarising cytokine IL-21 and the receptor for IL-23 were also suppressed. Intriguingly, adoptively transferred, PD-1-/- Tc17 cells were highly efficient in rejection of established B16 melanoma in vivo and displayed Tc1 like characteristics ex vivo. When using IL-17A-eGFP reporter mice for in vitro fate tracking, IL-17A-eGFP expressing cells lacking PD-1 signaling upon re-stimulation with IL-12 quickly acquired Tc1 characteristics such as IFN-γ, and granzyme B expression, implicating lineage independent upregulation of CTL-characteristics that are needed for tumor control. In line with plasticity characteristics, absence of PD-1 signaling in Tc17 cells increased the expression of the stemness and persistence-associated molecules TCF1 and BCL6. Thus, PD-1 plays a central role in the specific suppression of Tc17 differentiation and its plasticity in relation to CTL-driven tumor rejection, which provides further explanation as to why the blockade of PD-1 is such an efficient therapeutic target for inducing tumor rejection.
Collapse
Affiliation(s)
- Aditya Arra
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C. Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- *Correspondence: Monika C. Brunner-Weinzierl,
| |
Collapse
|
11
|
Sugiura D, Shimizu K, Maruhashi T, Okazaki IM, Okazaki T. T-cell-intrinsic and -extrinsic regulation of PD-1 function. Int Immunol 2021; 33:693-698. [PMID: 34596210 DOI: 10.1093/intimm/dxab077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer immunotherapies that target PD-1 (programmed cell death 1) aim to destroy tumors by activating tumor-specific T cells that are otherwise inactivated by PD-1. Although these therapies have significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment, only a limited proportion of patients benefits from the therapies currently. Therefore, there is a continued need to decipher the complex biology of PD-1 to improve therapeutic efficacies as well as to prevent immune-related adverse events. Especially, the spaciotemporal context in which PD-1 functions and the properties of T cells that are restrained by PD-1 are only vaguely understood. We have recently revealed that PD-1 function is strictly restricted at the activation phase of T-cell responses by the cis-interactions of PD-L1 and CD80 on antigen-presenting cells, which is critical for the induction of optimal T-cell responses. We also found that the sensitivity to the effects of PD-1 in T cells is essentially determined by T-cell-intrinsic factors. In T cells bearing T-cell antigen-receptors (TCRs) with lower affinity to antigenic peptides, PD-1 inhibits the expression of TCR-inducible genes more efficiently; thereby PD-1 preferentially suppresses low-affinity T cells. Thus, PD-1 function is coordinately regulated by various T-cell-intrinsic and -extrinsic factors that alter the responsiveness of T cells and the availability of PD-1 ligands. Precise and deeper understanding of the regulatory mechanisms of PD-1 is expected to facilitate the rational development of effective and safe immunotherapies.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kenji Shimizu
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Il-Mi Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|