1
|
Nishio H, Cano-Ramirez DL, Muranaka T, de Barros Dantas LL, Honjo MN, Sugisaka J, Kudoh H, Dodd AN. Circadian and environmental signal integration in a natural population of Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2402697121. [PMID: 39172785 PMCID: PMC11363283 DOI: 10.1073/pnas.2402697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Shiga522-8522, Japan
| | - Dora L. Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi464-0814, Japan
| | | | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| |
Collapse
|
2
|
Li H, Xue M, Zhang H, Zhao F, Li X, Yu S, Jiang D. A warm temperature-released negative feedback loop fine-tunes PIF4-mediated thermomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100833. [PMID: 38327058 PMCID: PMC11121753 DOI: 10.1016/j.xplc.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plants can sense temperature changes and adjust their growth accordingly. In Arabidopsis, high ambient temperatures stimulate stem elongation by activating a key thermoresponsive regulator, PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Here, we show that warmth promotes the nighttime transcription of GI, which is necessary for the high temperature-induced transcription of TOC1. Genetic analyses suggest that GI prevents excessive thermoresponsive growth by inhibiting PIF4, with this regulatory mechanism being partially reliant on TOC1. GI transcription is repressed by ELF3 and HY5, which concurrently inhibit PIF4 expression and activity. Temperature elevation causes the deactivation or degradation of ELF3 and HY5, leading to PIF4 activation and relief of GI transcriptional repression at high temperatures. This allows PIF4 to further activate GI transcription in response to elevated temperatures. GI, in turn, inhibits PIF4, establishing a negative feedback loop that fine-tunes PIF4 activity. In addition, we demonstrate that ELF3, HY5, and PIF4 regulate GI transcription by modulating the enrichment of histone variant H2A.Z at the GI locus. Together, our findings suggest that thermal release of a negative feedback loop finely adjusts plant thermomorphogenesis.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Peng KC, Siao W, Hsieh HL. FAR-RED INSENSITIVE 219 and phytochrome B corepress shade avoidance via modulating nuclear speckle formation. PLANT PHYSIOLOGY 2023; 192:1449-1465. [PMID: 36869668 PMCID: PMC10231371 DOI: 10.1093/plphys/kiad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Plants can sense the shade from neighboring plants by detecting a reduction of the red:far-red light (R:FR) ratio. Phytochrome B (phyB) is the primary photoreceptor that perceives shade light and regulates jasmonic acid (JA) signaling. However, the molecular mechanisms underlying phyB and JA signaling integration in shade responses remain largely unknown. Here, we show the interaction of phyB and FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) in a functional demand manner in Arabidopsis (Arabidopsis thaliana) seedling development. Genetic evidence and interaction studies indicated that phyB and FIN219 synergistically and negatively regulate shade-induced hypocotyl elongation. Moreover, phyB interacted with various isoforms of FIN219 under high and low R:FR light. Methyl jasmonate (MeJA) treatment, FIN219 mutation, and PHYBOE digalactosyldiacylglycerol synthase1-1 (dgd1-1) plants, which show increased levels of JA, altered the patterns of phyB-associated nuclear speckles under the same conditions. Surprisingly, PHYBOE dgd1-1 showed a shorter hypocotyl phenotype than its parental mutants under shade conditions. Microarray assays using PHYBOE and PHYBOE fin219-2 indicated that PHYB overexpression substantially affects defense response-related genes under shade light and coregulates expression of auxin-responsive genes with FIN219. Thus, our findings reveal that phyB substantially crosstalks with JA signaling through FIN219 to modulate seedling development under shade light.
Collapse
Affiliation(s)
- Kai-Chun Peng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wei Siao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Sakeef N, Scandola S, Kennedy C, Lummer C, Chang J, Uhrig RG, Lin G. Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data. Comput Struct Biotechnol J 2023; 21:3183-3195. [PMID: 37333861 PMCID: PMC10275741 DOI: 10.1016/j.csbj.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
In order to mitigate the effects of a changing climate, agriculture requires more effective evaluation, selection, and production of crop cultivars in order to accelerate genotype-to-phenotype connections and the selection of beneficial traits. Critically, plant growth and development are highly dependent on sunlight, with light energy providing plants with the energy required to photosynthesize as well as a means to directly intersect with the environment in order to develop. In plant analyses, machine learning and deep learning techniques have a proven ability to learn plant growth patterns, including detection of disease, plant stress, and growth using a variety of image data. To date, however, studies have not assessed machine learning and deep learning algorithms for their ability to differentiate a large cohort of genotypes grown under several growth conditions using time-series data automatically acquired across multiple scales (daily and developmentally). Here, we extensively evaluate a wide range of machine learning and deep learning algorithms for their ability to differentiate 17 well-characterized photoreceptor deficient genotypes differing in their light detection capabilities grown under several different light conditions. Using algorithm performance measurements of precision, recall, F1-Score, and accuracy, we find that Suport Vector Machine (SVM) maintains the greatest classification accuracy, while a combined ConvLSTM2D deep learning model produces the best genotype classification results across the different growth conditions. Our successful integration of time-series growth data across multiple scales, genotypes and growth conditions sets a new foundational baseline from which more complex plant science traits can be assessed for genotype-to-phenotype connections.
Collapse
Affiliation(s)
- Nazmus Sakeef
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jiameng Chang
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guohui Lin
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Zhu T, Yang C, Xie Y, Huang S, Li L. Shade‐induced
lncRNA
PUAR
promotes shade response by repressing
PHYA
expression. EMBO Rep 2023; 24:e56105. [PMID: 36970931 PMCID: PMC10157314 DOI: 10.15252/embr.202256105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Shade avoidance syndrome (SAS) commonly occurs in plants experiencing vegetative shade, triggering a series of morphological and physiological changes for the plants to reach more light. A number of positive regulators, such as PHYTOCHROME-INTERACTING 7 (PIF7), and negative regulators, such as PHYTOCHROMES, are known to ensure appropriate SAS. Here, we identify 211 shade-regulated long non-coding RNAs (lncRNAs) in Arabidopsis. We further characterize PUAR (PHYA UTR Antisense RNA), a lncRNA produced from the intron of the 5' UTR of the PHYTOCHROME A (PHYA) locus. PUAR is induced by shade and promotes shade-induced hypocotyl elongation. PUAR physically associates with PIF7 and represses the shade-mediated induction of PHYA by blocking the binding of PIF7 to the 5' UTR of PHYA. Our findings highlight a role for lncRNAs in SAS and provide insight into the mechanism of PUAR in regulating PHYA gene expression and SAS.
Collapse
Affiliation(s)
- Tongdan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuanwei Yang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Casal JJ, Fankhauser C. Shade avoidance in the context of climate change. PLANT PHYSIOLOGY 2023; 191:1475-1491. [PMID: 36617439 PMCID: PMC10022646 DOI: 10.1093/plphys/kiad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 05/13/2023]
Abstract
When exposed to changes in the light environment caused by neighboring vegetation, shade-avoiding plants modify their growth and/or developmental patterns to access more sunlight. In Arabidopsis (Arabidopsis thaliana), neighbor cues reduce the activity of the photosensory receptors phytochrome B (phyB) and cryptochrome 1, releasing photoreceptor repression imposed on PHYTOCHROME INTERACTING FACTORs (PIFs) and leading to transcriptional reprogramming. The phyB-PIF hub is at the core of all shade-avoidance responses, whilst other photosensory receptors and transcription factors contribute in a context-specific manner. CONSTITUTIVELY PHOTOMORPHOGENIC1 is a master regulator of this hub, indirectly stabilizing PIFs and targeting negative regulators of shade avoidance for degradation. Warm temperatures reduce the activity of phyB, which operates as a temperature sensor and further increases the activities of PIF4 and PIF7 by independent temperature sensing mechanisms. The signaling network controlling shade avoidance is not buffered against climate change; rather, it integrates information about shade, temperature, salinity, drought, and likely flooding. We, therefore, predict that climate change will exacerbate shade-induced growth responses in some regions of the planet while limiting the growth potential in others.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, 1417 Buenos Aires, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Davis W, Endo M, Locke JCW. Spatially specific mechanisms and functions of the plant circadian clock. PLANT PHYSIOLOGY 2022; 190:938-951. [PMID: 35640123 PMCID: PMC9516738 DOI: 10.1093/plphys/kiac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Like many organisms, plants have evolved a genetic network, the circadian clock, to coordinate processes with day/night cycles. In plants, the clock is a pervasive regulator of development and modulates many aspects of physiology. Clock-regulated processes range from the correct timing of growth and cell division to interactions with the root microbiome. Recently developed techniques, such as single-cell time-lapse microscopy and single-cell RNA-seq, are beginning to revolutionize our understanding of this clock regulation, revealing a surprising degree of organ, tissue, and cell-type specificity. In this review, we highlight recent advances in our spatial view of the clock across the plant, both in terms of how it is regulated and how it regulates a diversity of output processes. We outline how understanding these spatially specific functions will help reveal the range of ways that the clock provides a fitness benefit for the plant.
Collapse
Affiliation(s)
- William Davis
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Rhodes BM, Siddiqui H, Khan S, Devlin PF. Dual Role for FHY3 in Light Input to the Clock. FRONTIERS IN PLANT SCIENCE 2022; 13:862387. [PMID: 35755710 PMCID: PMC9218818 DOI: 10.3389/fpls.2022.862387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The red-light regulated transcription factors FHY3 and FAR1 form a key point of light input to the plant circadian clock in positively regulating expression of genes within the central clock. However, the fhy3 mutant shows an additional red light-specific disruption of rhythmicity which is inconsistent with this role. Here we demonstrate that only fhy3 and not far1 mutants show this red specific disruption of rhythmicity. We examined the differences in rhythmic transcriptome in red versus white light and reveal differences in patterns of rhythmicity among the central clock proteins suggestive of a change in emphasis within the central mechanism of the clock, changes which underlie the red specificity of the fhy3 mutant. In particular, changes in enrichment of promoter elements were consistent with a key role for the HY5 transcription factor, a known integrator of the ratio of red to blue light in regulation of the clock. Examination of differences in the rhythmic transcriptome in the fhy3 mutant in red light identified specific disruption of the CCA1-regulated ELF3 and LUX central clock genes, while the CCA1 target TBS element, TGGGCC, was enriched among genes that became arrhythmic. Coupled with the known interaction of FHY3 but not FAR1 with CCA1 we propose that the red-specific circadian phenotype of fhy3 may involve disruption of the previously demonstrated moderation of CCA1 activity by FHY3 rather than a disruption of its own transcriptional regulatory activity. Together, this evidence suggests a conditional redundancy between FHY3 and HY5 in the integration of red and blue light input to the clock in order to enable a plasticity in response to light and optimise plant adaptation. Furthermore, our evidence also suggests changes in CCA1 activity between red and white light transcriptomes. This, together with the documented interaction of HY5 with CCA1, leads us to propose a model whereby this integration of red and blue signals may at least partly occur via direct FHY3 and HY5 interaction with CCA1 leading to moderation of CCA1 activity.
Collapse
Affiliation(s)
| | | | | | - Paul F. Devlin
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
9
|
Xie X, Cheng H, Hou C, Ren M. Integration of Light and Auxin Signaling in Shade Plants: From Mechanisms to Opportunities in Urban Agriculture. Int J Mol Sci 2022; 23:3422. [PMID: 35408782 PMCID: PMC8998421 DOI: 10.3390/ijms23073422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
With intensification of urbanization throughout the world, food security is being threatened by the population surge, frequent occurrence of extreme climate events, limited area of available cultivated land, insufficient utilization of urban space, and other factors. Determining the means by which high-yielding and high-quality crops can be produced in a limited space is an urgent priority for plant scientists. Dense planting, vertical production, and indoor cultivation are effective ways to make full use of space and improve the crop yield. The results of physiological and molecular analyses of the model plant species Arabidopsis thaliana have shown that the plant response to shade is the key to regulating the plant response to changes in light intensity and quality by integrating light and auxin signals. In this study, we have summarized the major molecular mechanisms of shade avoidance and shade tolerance in plants. In addition, the biotechnological strategies of enhancing plant shade tolerance are discussed. More importantly, cultivating crop varieties with strong shade tolerance could provide effective strategies for dense planting, vertical production, and indoor cultivation in urban agriculture in the future.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (H.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hao Cheng
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (H.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chenyang Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (X.X.); (H.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
10
|
Xu H, Chen P, Tao Y. Understanding the Shade Tolerance Responses Through Hints From Phytochrome A-Mediated Negative Feedback Regulation in Shade Avoiding Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:813092. [PMID: 35003197 PMCID: PMC8727698 DOI: 10.3389/fpls.2021.813092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.
Collapse
Affiliation(s)
| | | | - Yi Tao
- Key Laboratory of Xiamen Plant Genetics and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Li C, Luo Y, Jin M, Sun S, Wang Z, Li Y. Response of Lignin Metabolism to Light Quality in Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:729647. [PMID: 34589105 PMCID: PMC8473876 DOI: 10.3389/fpls.2021.729647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 06/02/2023]
Abstract
The low red/far-red (R/FR) light proportion at the base of the high-density wheat population leads to poor stem quality and increases lodging risk. We used Shannong 23 and Shannong 16 as the test materials. By setting three-light quality treatments: normal light (CK), red light (RL), and far-red light (FRL), we irradiated the base internodes of the stem with RL and FRL for 7h. Our results showed that RL irradiation enhanced stem quality, as revealed by increased breaking strength, stem diameter, wall thickness and, dry weight per unit length, and the total amount of lignin and related gene expression increased, at the same time. The composition of lignin subunits was related to the lodging resistance of wheat. The proportion of S+G subunits and H subunits played a key role in wheat lodging resistance. RL could increase the content of S subunits and G subunits and the proportion of S+G subunits, reduce the proportion of H subunits. We described here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of stem breaking strength by light quality, particularly the effect of light quality on lignin biosynthesis and its relationship with lodging resistance in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Li
- State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai’an, China
| |
Collapse
|