1
|
Chakrabarti R, Verma L, Hadjiev VG, Palmer JC, Vekilov PG. The elementary reactions for incorporation into crystals. Proc Natl Acad Sci U S A 2024; 121:e2320201121. [PMID: 38315836 PMCID: PMC10873555 DOI: 10.1073/pnas.2320201121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
The growth rates of crystals are largely dictated by the chemical reaction between solute and kinks, in which a solute molecule severs its bonds with the solvent and establishes new bonds with the kink. Details on this sequence of bond breaking and rebuilding remain poorly understood. To elucidate the reaction at the kinks we employ four solvents with distinct functionalities as reporters on the microscopic structures and their dynamics along the pathway into a kink. We combine time-resolved in situ atomic force microscopy and x-ray and optical methods with molecular dynamics simulations. We demonstrate that in all four solvents the solute, etioporphyrin I, molecules reach the steps directly from the solution; this finding identifies the measured rate constant for step growth as the rate constant of the reaction between a solute molecule and a kink. We show that the binding of a solute molecule to a kink divides into two elementary reactions. First, the incoming solute molecule sheds a fraction of its solvent shell and attaches to molecules from the kink by bonds distinct from those in its fully incorporated state. In the second step, the solute breaks these initial bonds and relocates to the kink. The strength of the preliminary bonds with the kink determines the free energy barrier for incorporation into a kink. The presence of an intermediate state, whose stability is controlled by solvents and additives, may illuminate how minor solution components guide the construction of elaborate crystal architectures in nature and the search for solution compositions that suppress undesirable or accelerate favored crystallization in industry.
Collapse
Affiliation(s)
- Rajshree Chakrabarti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204-4004
| | - Lakshmanji Verma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204-4004
| | - Viktor G. Hadjiev
- Texas Center for Superconductivity, University of Houston, Houston, TX77004-50024
| | - Jeremy C. Palmer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204-4004
| | - Peter G. Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX77204-4004
- Department of Chemistry, University of Houston, Houston, TX77204-5003
| |
Collapse
|
2
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Bertouille J, Kasas S, Martin C, Hennecke U, Ballet S, Willaert RG. Fast Self-Assembly Dynamics of a β-Sheet Peptide Soft Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206795. [PMID: 36807731 DOI: 10.1002/smll.202206795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Indexed: 05/18/2023]
Abstract
Peptide-based hydrogels are promising biocompatible materials for wound healing, drug delivery, and tissue engineering applications. The physical properties of these nanostructured materials depend strongly on the morphology of the gel network. However, the self-assembly mechanism of the peptides that leads to a distinct network morphology is still a subject of ongoing debate, since complete assembly pathways have not yet been resolved. To unravel the dynamics of the hierarchical self-assembly process of the model β-sheet forming peptide KFE8 (Ac-FKFEFKFE-NH2 ), high-speed atomic force microscopy (HS-AFM) in liquid is used. It is demonstrated that a fast-growing network, based on small fibrillar aggregates, is formed at a solid-liquid interface, while in bulk solution, a distinct, more prolonged nanotube network emerges from intermediate helical ribbons. Moreover, the transformation between these morphologies has been visualized. It is expected that this new in situ and in real-time methodology will set the path for the in-depth unravelling of the dynamics of other peptide-based self-assembled soft materials, as well as gaining advanced insights into the formation of fibers involved in protein misfolding diseases.
Collapse
Affiliation(s)
- Jolien Bertouille
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Ulrich Hennecke
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Ronnie G Willaert
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Vrije Universiteit Brussel, Brussels, 1050, Belgium
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| |
Collapse
|
4
|
Sun X, Dyson HJ, Wright PE. Role of conformational dynamics in pathogenic protein aggregation. Curr Opin Chem Biol 2023; 73:102280. [PMID: 36878172 PMCID: PMC10033434 DOI: 10.1016/j.cbpa.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.
Collapse
Affiliation(s)
- Xun Sun
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Mafimoghaddam S, Xu Y, Sherman MB, Orlova EV, Karki P, Orman MA, Vekilov PG. Suppression of amyloid-β fibril growth by drug-engineered polymorph transformation. J Biol Chem 2022; 298:102662. [PMID: 36334629 PMCID: PMC9720346 DOI: 10.1016/j.jbc.2022.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrillization of the protein amyloid β is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.
Collapse
Affiliation(s)
- Sima Mafimoghaddam
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Yuechuan Xu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elena V. Orlova
- Department of Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Prashant Karki
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Peter G. Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA,Department of Chemistry, University of Houston, Houston, Texas, USA,For correspondence: Peter G. Vekilov
| |
Collapse
|
7
|
Chen X, Chen M, Wolynes PG. Exploring the Interplay between Disordered and Ordered Oligomer Channels on the Aggregation Energy Landscapes of α-Synuclein. J Phys Chem B 2022; 126:5250-5261. [PMID: 35815598 DOI: 10.1021/acs.jpcb.2c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The abnormal aggregation of α-synulcein is associated with multiple neurodegenerative diseases such as Parkinson's disease. The hydrophobic non-amyloid component (NAC) region of α-synuclein comprises the core of the fibril in vitro and in vivo. In this work, we study the aggregation landscape of the hydrophobic NAC region of α-synuclein using a transferrable coarse-grained force field, the associative memory water-mediated structure, and energy model (AWSEM). Using structural similarity, we can group metastable states on the free energy landscape of aggregation into three types of oligomers: disordered oligomers, prefibrillar oligomers with disordered tips, and ordered prefibrillar oligomers. The prefibrillar oligomers with disordered tips have more in-register parallel β strands than do the fully disordered oligomers but have fewer in-register parallel β strands than the ordered prefibrillar oligomers. Along with the ordered prefibrillar species, the disordered oligomeric states dominate at small oligomer sizes while the prefibrillar species with disordered tips thermodynamically dominate with the growth of oligomers. The topology of the aggregation landscape and observations in simulations suggest there is backtracking between ordered prefibrillar oligomers and other kinds of oligomers as the aggregation proceeds. The significant structural differences between the ordered prefibrillar oligomers and the disordered oligomers support the idea that the growth of these two kinds of oligomers involves kinetically independent parallel pathways. In contrast, the overall structural similarity between the fully ordered prefibrillar oligomers and the prefibrillar oligomers with disordered tips implies that two channels can interconvert on slower time scales. We also evaluate the effects of phosphorylation on the aggregation free energy landscape using statistical mechanical perturbation theory.
Collapse
Affiliation(s)
- Xun Chen
- Center for Theoretical Biological Physics, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Mingchen Chen
- Department of Research and Development, neoX Biotech, Beijing 102206, China
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Sønderby TV, Najarzadeh Z, Otzen DE. Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies. Molecules 2022; 27:4080. [PMID: 35807329 PMCID: PMC9268375 DOI: 10.3390/molecules27134080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized process. Besides a host of helper proteins, FuBA formation is aided by multiple imperfect repeats which stabilize amyloid and streamline the aggregation mechanism to a fast-track assembly dominated by primary nucleation. These repeats, which are found in variable numbers in Pseudomonas, are most likely the structural core of the fibrils, though we still lack experimental data to determine whether the repeats give rise to β-helix structures via stacked β-hairpins (highly likely for CsgA) or more complicated arrangements (possibly the case for FapC). The response of FuBA fibrillation to denaturants suggests that nucleation and elongation involve equal amounts of folding, but protein chaperones preferentially target nucleation for effective inhibition. Smart peptides can be designed based on these imperfect repeats and modified with various flanking sequences to divert aggregation to less stable structures, leading to a reduction in biofilm formation. Small molecules such as EGCG can also divert FuBA to less organized structures, such as partially-folded oligomeric species, with the same detrimental effect on biofilm. Finally, the strong tendency of FuBA to self-assemble can lead to the formation of very regular two-dimensional amyloid films on structured surfaces such as graphite, which strongly implies future use in biosensors or other nanobiomaterials. In summary, the properties of functional amyloid are a much-needed corrective to the unfortunate association of amyloid with neurodegenerative disease and a testimony to nature's ability to get the best out of a protein fold.
Collapse
Affiliation(s)
- Thorbjørn Vincent Sønderby
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
- Sino-Danish Center (SDC), Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, China
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
| |
Collapse
|
9
|
Kumar H, Udgaonkar JB. Elongation of Fibrils Formed by a Tau Fragment is Inhibited by a Transient Dimeric Intermediate. J Phys Chem B 2022; 126:3385-3397. [PMID: 35503811 DOI: 10.1021/acs.jpcb.1c10752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation and propagation of aggregates of the tau protein in the brain are associated with the tauopathy group of neurodegenerative diseases. Different tauopathies have been shown to be associated with structurally distinct aggregates of tau. However, the mechanism by which different structural folds arise remains poorly understood. In this study of fibril formation by the fragment tau-K18 of tau, it is shown that the Lys 280 → Glu mutation in the variant tau-K18 K280E forms fibrils that are morphologically distinct from those formed by wild-type (wt) tau-K18. The mutant fibrils appear to have two protofilaments twisted around each other, whereas the wt fibrils are straight and appear to have a single protofilament. Modeling the kinetics of seeded aggregation, using a simple Michaelis-Menten-like mechanism, reveals that the two morphologically distinct fibrils are elongated with different catalytic efficiencies. Surprisingly, when the elongation of monomeric tau-K18 is seeded with tau-K18 K280E fibrils, it is seen to be inhibited at high monomer concentrations. Such inhibition is not seen when elongation is seeded with tau-K18 fibrils. The mechanism of inhibition is shown to be describable as uncompetitive inhibition, in which a transient dimeric form of tau-K18 acts as an uncompetitive inhibitor. Importantly, a dimeric form of tau-K18 is seen to be populated to a detectable extent early during aggregation. A covalently linked tau dimer, with an inter-molecular disulphide linkage, is shown to be capable of acting as an inhibitor. In summary, a quantitative kinetic approach has provided an understanding of how the formation of distinct structural folds of tau fibrils can be modulated by mutation and how the elongation of one fibril type, but not the other, is inhibited by a transiently formed dimer.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
10
|
Watanabe-Nakayama T, Ono K. Single-molecule Observation of Self-Propagating Amyloid Fibrils. Microscopy (Oxf) 2022; 71:133-141. [DOI: 10.1093/jmicro/dfac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The assembly of misfolded proteins into amyloid fibrils is associated with amyloidosis, including neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and prion diseases. The self-propagation of amyloid fibrils is widely observed in the aggregation pathways of numerous amyloidogenic proteins. This propensity with plasticity in primary nucleation allows amyloid fibril polymorphism, which is correlated with the pathology/phenotypes of patients. Because the interference with the nucleation and replication processes of amyloid fibrils can alter the amyloid structure and the outcome of the disease, these processes can be a target for developing clinical drugs. Single-molecule observation of amyloid fibril replication can be an experimental system to provide the kinetic parameters for simulation studies and confirm the effect of clinical drugs. Here, we review single-molecule observation of the amyloid fibril replication process using fluorescence microscopy and time-lapse atomic force microscopy, including high-speed atomic force microscopy. We discussed the amyloid fibril replication process and combined single-molecule observation results with molecular dynamics simulations.
Mini Abstract Structural dynamics in amyloid aggregation is related with various Alzheimer’s and Parkinson’s disease symptoms. Single-molecule observation using high-speed atomic force microscopy can directly visualize the structural dynamics of individual amyloid aggregate assemblies. Here, we review historical and recent studies of single-molecule observation of amyloid aggregation with supportive molecular dynamics simulation.
Collapse
Affiliation(s)
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8640, Japan
| |
Collapse
|