1
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
2
|
Wu K, Dhillon N, Bajor A, Abrahamsson S, Kamakaka RT. Yeast heterochromatin stably silences only weak regulatory elements by altering burst duration. Cell Rep 2024; 43:113983. [PMID: 38517895 PMCID: PMC11141299 DOI: 10.1016/j.celrep.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae involves the generation of a chromatin state that stably represses transcription. Using multiple reporter assays, a diverse set of upstream activating sequence enhancers and core promoters were investigated for their susceptibility to silencing. We show that heterochromatin stably silences only weak and stress-induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements, and the partial repression of these elements did not result in bistable expression states. Permutation analysis of enhancers and promoters indicates that both elements are targets of repression. Chromatin remodelers help specific regulatory elements to resist repression, most probably by altering nucleosome mobility and changing transcription burst duration. The strong enhancers/promoters can be repressed if silencer-bound Sir1 is increased. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating-type gene regulatory elements but not strong housekeeping gene regulatory sequences.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Namrita Dhillon
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Antone Bajor
- Electrical Engineering Department, Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sara Abrahamsson
- Electrical Engineering Department, Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
3
|
Movilla Miangolarra A, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains Saccharomyces cerevisiae heterochromatin bistability. Proc Natl Acad Sci U S A 2024; 121:e2403316121. [PMID: 38593082 PMCID: PMC11032488 DOI: 10.1073/pnas.2403316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.
Collapse
Affiliation(s)
| | - Daniel S. Saxton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Zhi Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
4
|
Wu K, Dhillon N, Bajor A, Abrahamson S, Kamakaka RT. Yeast Heterochromatin Only Stably Silences Weak Regulatory Elements by Altering Burst Duration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561072. [PMID: 37873261 PMCID: PMC10592971 DOI: 10.1101/2023.10.05.561072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The interplay between nucleosomes and transcription factors leads to programs of gene expression. Transcriptional silencing involves the generation of a chromatin state that represses transcription and is faithfully propagated through DNA replication and cell division. Using multiple reporter assays, including directly visualizing transcription in single cells, we investigated a diverse set of UAS enhancers and core promoters for their susceptibility to heterochromatic gene silencing. These results show that heterochromatin only stably silences weak and stress induced regulatory elements but is unable to stably repress housekeeping gene regulatory elements and the partial repression did not result in bistable expression states. Permutation analysis of different UAS enhancers and core promoters indicate that both elements function together to determine the susceptibility of regulatory sequences to repression. Specific histone modifiers and chromatin remodellers function in an enhancer specific manner to aid these elements to resist repression suggesting that Sir proteins likely function in part by reducing nucleosome mobility. We also show that the strong housekeeping regulatory elements can be repressed if silencer bound Sir1 is increased, suggesting that Sir1 is a limiting component in silencing. Together, our data suggest that the heterochromatic locus has been optimized to stably silence the weak mating type gene regulatory elements but not strong housekeeping gene regulatory sequences which could help explain why these genes are often found at the boundaries of silenced domains.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Namrita Dhillon
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Antone Bajor
- Electrical Engineering Department, Baskin School of Engineering, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Sara Abrahamson
- Electrical Engineering Department, Baskin School of Engineering, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| | - Rohinton T. Kamakaka
- Department of MCD Biology, 1156 High Street, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
5
|
Miangolarra AM, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains S. cerevisiae heterochromatin bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.552948. [PMID: 37645983 PMCID: PMC10461966 DOI: 10.1101/2023.08.12.552948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. Here, we propose a broader view: chromatin compaction can be both a cause and a consequence of the histone modification state, and this tight bidirectional interaction can underpin bistable transcriptional states. To test this theory, we developed a mathematical model for the dynamics of the HMR locus in S. cerevisiae, that incorporates activating histone modifications, silencing proteins and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states, and vice versa, and protein binding levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. This bidirectional feedback between chromatin compaction and the histone modification state may be an important regulatory mechanism at many loci.
Collapse
Affiliation(s)
- Ander Movilla Miangolarra
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel S Saxton
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhi Yan
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jasper Rine
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martin Howard
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|