1
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Zheng Y, Wang Y, Tian F, Nakajima T, Hui CY, Gong JP. Unique stick-slip crack dynamics of double-network hydrogels under pure-shear loading. Proc Natl Acad Sci U S A 2024; 121:e2322437121. [PMID: 39018192 PMCID: PMC11287148 DOI: 10.1073/pnas.2322437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
In this work, we have found that a prenotched double-network (DN) hydrogel, when subjected to tensile loading in a pure-shear geometry, exhibits intriguing stick-slip crack dynamics. These dynamics synchronize with the oscillation of the damage (yielding) zone at the crack tip. Through manipulation of the loading rate and the predamage level of the brittle network in DN gels, we have clarified that this phenomenon stems from the significant amount of energy dissipation required to form the damage zone at the crack tip, as well as a kinetic contrast between the rapid crack extension through the yielding zone (slip process) and the slow formation of a new yielding zone controlled by the external loading rate (stick process).
Collapse
Affiliation(s)
- Yong Zheng
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Yiru Wang
- Graduate School of Life Science, Hokkaido University, Sapporo001-0021, Japan
| | - Fucheng Tian
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
| | - Chung-Yuen Hui
- Field of Theoretical and Applied Mechanics, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY14853
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
3
|
Zheng Y, Wang Y, Nakajima T, Gong JP. Effect of Predamage on the Fracture Energy of Double-Network Hydrogels. ACS Macro Lett 2024:130-137. [PMID: 38205953 DOI: 10.1021/acsmacrolett.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Double-network (DN) hydrogels are tough soft materials, and the high fracture resistance can be attributed to the formation of a large damage zone (internal fracture of the brittle first network) around the crack tip. In this work, we studied the effect of predamage in the brittle network on the fracture energy Γc of DN hydrogels. The prestretch of the first network was induced by prestretching the DN gels to prestretch ratio λpre. Depending on the λpre in relative to the yielding stretch ratio λy, above which the brittle first network starts to break into discontinuous fragments inside DN gels, two regimes were observed: Γc decreases monotonically with λpre in the regime of λpre < λy, mainly due to the decreasing contribution from the bulk internal damage, while Γc increases with λpre in the regime of λpre > λy. The latter can be understood by the release of the hidden length of the stretchable network strands by the rupture of the brittle network, whereby the broken fragments of the brittle network could serve as sliding cross-links to further delocalize the stress-concentration near the crack tip and prevent chain scissions.
Collapse
Affiliation(s)
- Yong Zheng
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yiru Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Shrivastava A, M S, Gundiah N. Crack propagation and arrests in gelatin hydrogels are linked to tip curvatures. SOFT MATTER 2023; 19:6911-6919. [PMID: 37656061 DOI: 10.1039/d3sm00637a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Gelatin hydrogels are attractive scaffold materials for tissue engineering applications as they provide motifs for cell attachment, undergo large deformations, and are tunable. Low toughness and brittle fractures however limit their use in load bearing applications. An investigation of crack tip processes and mechanisms of crack propagation is warranted to link fracture properties with material microstructure. We cross-linked gelatin using glutaraldehyde to obtain low cross-linked control hydrogels and used an additional cross-linker, methylglyoxal, to fabricate MGO hydrogels with higher cross-links. We quantified fractures in the gelatin hydrogels from both groups using pure shear notch tests and characterized strain fields near the crack tip using 2-D digital image correlation. We used a numerical method based on Taylor's series expansion to measure the crack tip curvatures in the hydrogels. This method captures tip curvatures better than the parabolic method routinely used in studies. Results from our study show that cracks in gelatin hydrogels underwent frequent arrests during propagation through the specimen width in both groups. MGO hydrogels had 85% enhanced fracture toughness and a significantly higher number of stalls compared to the control group. Crack initiations following stalls in the sample correlated with low tip curvatures in both hydrogel groups. We also show that mechanical stretching blunts the crack tip before crack propagation; the degree of blunting was independent of the cross-link density and elastic modulus of the gelatin hydrogels. These results show a link between crack growth and the tip curvature in cross-linked gelatin hydrogels, and offer potential insights for the development of tougher hydrogels.
Collapse
Affiliation(s)
- Anshul Shrivastava
- Biomechanics Laboratory, Department of Mechanical Engineering Indian Institute of Science, Bangalore, India.
| | - Supreeth M
- Biomechanics Laboratory, Department of Mechanical Engineering Indian Institute of Science, Bangalore, India.
| | - Namrata Gundiah
- Biomechanics Laboratory, Department of Mechanical Engineering Indian Institute of Science, Bangalore, India.
| |
Collapse
|
5
|
Zhu S, Yan D, Chen L, Wang Y, Zhu F, Ye Y, Zheng Y, Yu W, Zheng Q. Enhanced Rupture Force in a Cut-Dispersed Double-Network Hydrogel. Gels 2023; 9:gels9020158. [PMID: 36826328 PMCID: PMC9956972 DOI: 10.3390/gels9020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The Kirigami approach is an effective way to realize controllable deformation of intelligent materials via introducing cuts into bulk materials. For materials ranging from ordinary stiff materials such as glass, ceramics, and metals to soft materials, including ordinary hydrogels and elastomers, all of them are all sensitive to the presence of cuts, which usually act as defects to deteriorate mechanical properties. Herein, we study the influence of the cuts on the mechanical properties by introducing "dispersed macro-scale cuts" into a model tough double network (DN) hydrogel (named D-cut gel), which consists of a rigid and brittle first network and a ductile stretchable second network. For comparison, DN gels with "continuous cuts" having the same number of interconnected cuts (named C-cut gel) were chosen. The fracture tests of D-cut gel and C-cut gel with different cut patterns were performed. The fracture observation revealed that crack blunting occurred at each cut tip, and a large wrinkle-like zone was formed where the wrinkles were parallel to the propagation direction of the cut. By utilizing homemade circular polarizing optical systems, we found that introducing dispersed cuts increases the rupture force by homogenizing the stress around the crack tip surrounding every cut, which reduces stress concentration in one certain cut. We believe this work reveals the fracture mechanism of tough soft materials with a kirigami cut structure, which should guide the design of advanced soft and tough materials along this line.
Collapse
Affiliation(s)
- Shilei Zhu
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dongdong Yan
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Chen
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fengbo Zhu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Yanan Ye
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
- Correspondence: (Y.Y.); (Y.Z.)
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
- Correspondence: (Y.Y.); (Y.Z.)
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Qiang Zheng
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Chen G, Tang S, Yan H, Zhu X, Wang H, Ma L, Mao K, Yang C, Ran J. Binary Double Network-like Structure: An Effective Energy-Dissipation System for Strong Tough Hydrogel Design. Polymers (Basel) 2023; 15:polym15030724. [PMID: 36772025 PMCID: PMC9921367 DOI: 10.3390/polym15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Currently, hydrogels simultaneously featuring high strength, high toughness, superior recoverability, and benign anti-fatigue properties have demonstrated great application potential in broad fields; thus, great efforts have been made by researchers to develop satisfactory hydrogels. Inspired by the double network (DN)-like theory, we previously reported a novel high-strength/high-toughness hydrogel which had two consecutive energy-dissipation systems, namely, the unzipping of coordinate bonds and the dissociation of the crystalline network. However, this structural design greatly damaged its stretchability, toughness recoverability, shape recoverability, and anti-fatigue capability. Thus, we realized that a soft/ductile matrix is indispensable for an advanced strong tough hydrogel. On basis of our previous work, we herein reported a modified energy-dissipation model, namely, a "binary DN-like structure" for strong tough hydrogel design for the first time. This structural model comprises three interpenetrated polymer networks: a covalent/ionic dually crosslinked tightened polymer network (stiff, first order network), a constrictive crystalline polymer network (sub-stiff, second order network), and a ductile/flexible polymer network (soft, third order network). We hypothesized that under low tension, the first order network served as the sacrificing phase through decoordination of ionic crosslinks, while the second order and third order networks together functioned as the elastic matrix phase; under high tension, the second order network worked as the energy dissipation phase (ionic crosslinks have been destroyed at the time), while the third order network played the role of the elastic matrix phase. Owing to the "binary DN-like" structure, the as-prepared hydrogel, in principle, should demonstrate enhanced energy dissipation capability, toughness/shape recoverability, and anti-fatigue/anti-tearing capability. Finally, through a series of characterizations, the unique "binary DN-like" structure was proved to fit well with our initial theoretical assumption. Moreover, compared to other energy-dissipation models, this structural design showed a significant advantage regarding comprehensive properties. Therefore, we think this design philosophy would inspire the development of advanced strong tough hydrogel in the future.
Collapse
Affiliation(s)
- Genxin Chen
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
| | - Sijie Tang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
| | - Honghan Yan
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
| | - Xiongbin Zhu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
| | - Huimin Wang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Changying Yang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
- Correspondence: (C.Y.); or (J.R.)
| | - Jiabing Ran
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China
- Correspondence: (C.Y.); or (J.R.)
| |
Collapse
|
7
|
Yang J, Liu Z, Li K, Hao J, Guo Y, Guo M, Li Z, Liu S, Yin H, Shi X, Qin G, Sun G, Zhu L, Chen Q. Tough Adhesive, Antifreezing, and Antidrying Natural Globulin-Based Organohydrogels for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39299-39310. [PMID: 35972900 DOI: 10.1021/acsami.2c07213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels are often used to fabricate strain sensors; however, they also suffer from freezing at low temperatures and become dry during long-time storage. Encapsulation of hydrogels with elastomers is one of the methods to solve these problems although the adhesion between hydrogels and elastomers is usually low. In this work, using bovine serum protein (BSA) as the natural globulin model and glycerol/H2O as the mixture solvent, BSA/polyacrylamide organohydrogels (BSA/PAAm OHGs) were prepared by a facile photopolymerization approach. At the optimal condition, BSA/PAAm OHG demonstrated not only high toughness but also tough adhesion properties, which could strongly adhere to various substrates, such as glass, metals, rigid polymeric materials (even poly(tetrafluoroethylene), i.e., PTFE), and soft elastomers. Moreover, BSA/PAAm OHG was flexible and showed tough adhesion at -20 °C. The toughening mechanism and the adhesive mechanism were proposed. On being encapsulated by poly(dimethylsiloxane) (PDMS), it illustrated good antidrying performance. After introducing a conductive filler, the encapsulated BSA/PAAm OHG could be used as a strain sensor to detect human motions. This work provides a better understanding of the adhesive mechanism of natural protein-based organohydrogels.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhuangzhuang Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Ke Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jiajia Hao
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yaxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Mingxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhipeng Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuzheng Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Qiang Chen
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|