1
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
2
|
Papenfort K, Storz G. Insights into bacterial metabolism from small RNAs. Cell Chem Biol 2024; 31:1571-1577. [PMID: 39094580 DOI: 10.1016/j.chembiol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
The study of small, regulatory RNAs (sRNA) that act by base-pairing with target RNAs in bacteria has been steadily advancing, particularly with the availability of more and more transcriptome and RNA-RNA interactome datasets. While the characterization of multiple sRNAs has helped to elucidate their mechanisms of action, these studies also are providing insights into protein function, control of metabolic flux, and connections between metabolic pathways as we will discuss here. In describing several examples of the metabolic insights gained, we will summarize the different types of base-pairing sRNAs including mRNA-derived sRNAs, sponge RNAs, RNA mimics, and dual-function RNAs as well as suggest how information about sRNAs could be exploited in the future.
Collapse
Affiliation(s)
- Kai Papenfort
- Friedrich Schiller University Jena, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA.
| |
Collapse
|
3
|
Mohsen JJ, Mohsen MG, Jiang K, Landajuela A, Quinto L, Isaacs FJ, Karatekin E, Slavoff SA. Cellular function of the GndA small open reading frame-encoded polypeptide during heat shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601336. [PMID: 38979229 PMCID: PMC11230408 DOI: 10.1101/2024.06.29.601336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Over the past 15 years, hundreds of previously undiscovered bacterial small open reading frame (sORF)-encoded polypeptides (SEPs) of fewer than fifty amino acids have been identified, and biological functions have been ascribed to an increasing number of SEPs from intergenic regions and small RNAs. However, despite numbering in the dozens in Escherichia coli, and hundreds to thousands in humans, same-strand nested sORFs that overlap protein coding genes in alternative reading frames remain understudied. In order to provide insight into this enigmatic class of unannotated genes, we characterized GndA, a 36-amino acid, heat shock-regulated SEP encoded within the +2 reading frame of the gnd gene in E. coli K-12 MG1655. We show that GndA pulls down components of respiratory complex I (RCI) and is required for proper localization of a RCI subunit during heat shock. At high temperature GndA deletion (ΔGndA) cells exhibit perturbations in cell growth, NADH+/NAD ratio, and expression of a number of genes including several associated with oxidative stress. These findings suggest that GndA may function in maintenance of homeostasis during heat shock. Characterization of GndA therefore supports the nascent but growing consensus that functional, overlapping genes occur in genomes from viruses to humans.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
| | - Michael G. Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
| | - Ane Landajuela
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Laura Quinto
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Farren J. Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Systems Biology Institute, Yale University, West Haven, CT 06516
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
- Wu Tsai Institute, Yale University, New Haven, CT 06511
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), 75006 Paris, France
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06511
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
4
|
Ekdahl AM, Julien T, Suraj S, Kribelbauer J, Tavazoie S, Freddolino PL, Contreras LM. Multiscale regulation of nutrient stress responses in Escherichia coli from chromatin structure to small regulatory RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599902. [PMID: 38979244 PMCID: PMC11230228 DOI: 10.1101/2024.06.20.599902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent research has indicated the presence of heterochromatin-like regions of extended protein occupancy and transcriptional silencing of bacterial genomes. We utilized an integrative approach to track chromatin structure and transcription in E. coli K-12 across a wide range of nutrient conditions. In the process, we identified multiple loci which act similarly to facultative heterochromatin in eukaryotes, normally silenced but permitting expression of genes under specific conditions. We also found a strong enrichment of small regulatory RNAs (sRNAs) among the set of differentially expressed transcripts during nutrient stress. Using a newly developed bioinformatic pipeline, the transcription factors regulating sRNA expression were bioinformatically predicted, with experimental follow-up revealing novel relationships for 36 sRNA-transcription factors candidates. Direct regulation of sRNA expression was confirmed by mutational analysis for five sRNAs of metabolic interest: IsrB, CsrB and CsrC, GcvB, and GadY. Our integrative analysis thus reveals additional layers of complexity in the nutrient stress response in E. coli and provides a framework for revealing similar poorly understood regulatory logic in other organisms.
Collapse
Affiliation(s)
- Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tatiana Julien
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sahana Suraj
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Judith Kribelbauer
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - P Lydia Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Li J, Ma Q, Huang J, Liu Y, Zhou J, Yu S, Zhang Q, Lin Y, Wang L, Zou J, Li Y. Small RNA SmsR1 modulates acidogenicity and cariogenic virulence by affecting protein acetylation in Streptococcus mutans. PLoS Pathog 2024; 20:e1012147. [PMID: 38620039 PMCID: PMC11045139 DOI: 10.1371/journal.ppat.1012147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Post-transcriptional regulation by small RNAs and post-translational modifications (PTM) such as lysine acetylation play fundamental roles in physiological circuits, offering rapid responses to environmental signals with low energy consumption. Yet, the interplay between these regulatory systems remains underexplored. Here, we unveil the cross-talk between sRNAs and lysine acetylation in Streptococcus mutans, a primary cariogenic pathogen known for its potent acidogenic virulence. Through systematic overexpression of sRNAs in S. mutans, we identified sRNA SmsR1 as a critical player in modulating acidogenicity, a key cariogenic virulence feature in S. mutans. Furthermore, combined with the analysis of predicted target mRNA and transcriptome results, potential target genes were identified and experimentally verified. A direct interaction between SmsR1 and 5'-UTR region of pdhC gene was determined by in vitro binding assays. Importantly, we found that overexpression of SmsR1 reduced the expression of pdhC mRNA and increased the intracellular concentration of acetyl-CoA, resulting in global changes in protein acetylation levels. This was verified by acetyl-proteomics in S. mutans, along with an increase in acetylation level and decreased activity of LDH. Our study unravels a novel regulatory paradigm where sRNA bridges post-transcriptional regulation with post-translational modification, underscoring bacterial adeptness in fine-tuning responses to environmental stress.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
7
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
8
|
Mohsen JJ, Martel AA, Slavoff SA. Microproteins-Discovery, structure, and function. Proteomics 2023; 23:e2100211. [PMID: 37603371 PMCID: PMC10841188 DOI: 10.1002/pmic.202100211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Advances in proteogenomic technologies have revealed hundreds to thousands of translated small open reading frames (sORFs) that encode microproteins in genomes across evolutionary space. While many microproteins have now been shown to play critical roles in biology and human disease, a majority of recently identified microproteins have little or no experimental evidence regarding their functionality. Computational tools have some limitations for analysis of short, poorly conserved microprotein sequences, so additional approaches are needed to determine the role of each member of this recently discovered polypeptide class. A currently underexplored avenue in the study of microproteins is structure prediction and determination, which delivers a depth of functional information. In this review, we provide a brief overview of microprotein discovery methods, then examine examples of microprotein structures (and, conversely, intrinsic disorder) that have been experimentally determined using crystallography, cryo-electron microscopy, and NMR, which provide insight into their molecular functions and mechanisms. Additionally, we discuss examples of predicted microprotein structures that have provided insight or context regarding their function. Analysis of microprotein structure at the angstrom level, and confirmation of predicted structures, therefore, has potential to identify translated microproteins that are of biological importance and to provide molecular mechanism for their in vivo roles.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alina A. Martel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Jordan B, Weidenbach K, Schmitz RA. The power of the small: the underestimated role of small proteins in bacterial and archaeal physiology. Curr Opin Microbiol 2023; 76:102384. [PMID: 37776678 DOI: 10.1016/j.mib.2023.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Small proteins encoded by small open-reading frames (sORFs) (≤70 aa) were overlooked for decades due to methodological reasons and are thus often missing in genome annotations. Novel detection methods such as ribosome profiling (Ribo-Seq) and mass spectrometry optimized for small proteins (peptidomics) have opened up a new field of interest and several catalogs of small proteins in bacteria and archaea have been recently reported. Many translated sORFs have been discovered in genomic locations previously thought to be noncoding, such as 5' or 3' untranslated regions or well-studied regulatory small RNAs (sRNAs). Even within longer ORFs, additional functional sORFs have been detected. Today, only a small proportion is characterized, but those small proteins indicate important and diverse functions in cellular physiology. Here, we summarize recently characterized small proteins involved in microbial metabolism.
Collapse
Affiliation(s)
- Britta Jordan
- Institute for General Microbiology, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Katrin Weidenbach
- Institute for General Microbiology, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University, 24118 Kiel, Germany.
| |
Collapse
|
10
|
Aoyama JJ, Storz G. Two for one: regulatory RNAs that encode small proteins. Trends Biochem Sci 2023; 48:1035-1043. [PMID: 37777390 PMCID: PMC10841219 DOI: 10.1016/j.tibs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
RNAs are commonly categorized as being either protein-coding mRNAs or noncoding RNAs. However, an increasing number of transcripts, in organisms ranging from bacteria to humans, are being found to have both coding and noncoding functions. In some cases, the sequences encoding the protein and the regulatory RNA functions are separated, while in other cases the sequences overlap. The protein and RNA can regulate similar or distinct pathways. Here we describe examples illustrating how these dual-function (also denoted bifunctional or dual-component) RNAs are identified and their mechanisms of action and cellular roles. We also discuss the synergy or competition between coding and RNA activity and how these regulators evolved, as well as how more dual-function RNAs might be discovered and exploited.
Collapse
Affiliation(s)
- Jordan J Aoyama
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA.
| |
Collapse
|
11
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
12
|
FinO/ProQ-family proteins: an evolutionary perspective. Biosci Rep 2023; 43:232566. [PMID: 36787218 PMCID: PMC9977716 DOI: 10.1042/bsr20220313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins are key actors of post-transcriptional networks. Almost exclusively studied in the light of their interactions with RNA ligands and the associated functional events, they are still poorly understood as evolutionary units. In this review, we discuss the FinO/ProQ family of bacterial RNA chaperones, how they evolve and spread across bacterial populations and what properties and opportunities they provide to their host cells. We reflect on major conserved and divergent themes within the family, trying to understand how the same ancestral RNA-binding fold, augmented with additional structural elements, could yield either highly specialised proteins or, on the contrary, globally acting regulatory hubs with a pervasive impact on gene expression. We also consider dominant convergent evolutionary trends that shaped their RNA chaperone activity and recurrently implicated the FinO/ProQ-like proteins in bacterial DNA metabolism, translation and virulence. Finally, we offer a new perspective in which FinO/ProQ-family regulators emerge as active evolutionary players with both negative and positive roles, significantly impacting the evolutionary modes and trajectories of their bacterial hosts.
Collapse
|
13
|
Cai X, Qin J, Li X, Yuan T, Yan B, Cai J. LipR functions as an intracellular pH regulator in Bacillus thuringiensis under glucose conditions. MLIFE 2023; 2:58-72. [PMID: 38818337 PMCID: PMC10989752 DOI: 10.1002/mlf2.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 06/01/2024]
Abstract
Intracellular pH critically affects various biological processes, and an appropriate cytoplasmic pH is essential for ensuring bacterial growth. Glucose is the preferred carbon source for most heterotrophs; however, excess glucose often causes the accumulation of acidic metabolites, lowering the intracellular pH and inhibiting bacterial growth. Bacillus thuringiensis can effectively cope with glucose-induced stress; unfortunately, little is known about the regulators involved in this process. Here, we document that the target of the dual-function sRNA YhfH, the lipR gene, encodes a LacI-family transcription factor LipR as an intracellular pH regulator when B. thuringiensis BMB171 is suddenly exposed to glucose. Under glucose conditions, lipR deletion leads to early growth arrest by causing a rapid decrease in intracellular pH (~5.4). Then, the direct targets and a binding motif (GAWAWCRWTWTCAT) of LipR were identified based on the electrophoretic mobility shift assay, the DNase-I footprinting assay, and RNA sequencing, and the gapN gene encoding a key enzyme in glycolysis was directly inhibited by LipR. Furthermore, Ni2+ is considered a possible effector for LipR. In addition to YhfH, the lipR expression was coregulated by itself, CcpA, and AbrB. Our study reveals that LipR plays a balancing role between glucose metabolism and intracellular pH in B. thuringiensis subjected to glucose stress.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- School of Life Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Jiaxin Qin
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Xuelian Li
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Taoxiong Yuan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Bing Yan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjinChina
- Tianjin Key Laboratory of Microbial Functional GenomicsTianjinChina
| |
Collapse
|
14
|
Comparative proteomic profiles of Schistosoma japonicum male worms derived from single-sex and bisexual infections. Int J Parasitol 2022; 52:815-828. [PMID: 36265673 DOI: 10.1016/j.ijpara.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Schistosomiasis, which is caused by parasitic schistosomes, remains the second most prevalent parasitic disease of mammals worldwide. To successfully maintain fecundity, schistosomes have evolved a lifecycle that involves the cooperation of morphologically distinct male and female forms. Eggs produced by worm pairs are vital to the lifecycle of the parasite and are responsible for pathogenesis. Understanding the reproductive mechanism of schistosomes will help to control infection. In this study, the proteomic profiles of single-sex infected male (SM) worms and bisexual infected mated male (MM) worms of Schistosoma japonicum at 18, 21, 23, and 25 days p.i. were identified through data-independent acquisition. In total, 674 differentially expressed proteins (DEPs) were identified for the SM and MM worms at all four timepoints. Bioinformatic analysis demonstrated that most of the DEPs were involved in biosynthetic processes including locomotion, cell growth and death, cell motility, and metabolic processes such as protein metabolism and glucose metabolism. Schistosoma japonicum glycosyltransferase (SjGT) and S. japonicum nicastrin protein (SjNCSTN) were selected for quantitative real‑time PCR analysis and long-term interference with small interfering RNA (siRNA) to further explore the functions of the DEPs. Sjgt mRNA expression was mainly enriched in male worms, while Sjncstn was enriched in both sexes. siRNA against SjGT and SjNCSTN resulted in minor morphological changes in the testes of male worms and significant decreased vitality and fertility. The present study provides comprehensive proteomic profiles of S. japonicum SM and MM worms at 18, 21, 23, and 25 days p.i. and offers insights into the mechanisms underlying the growth and maturation of schistosomes.
Collapse
|
15
|
Ravindran S. Profile of Gisela Storz. Proc Natl Acad Sci U S A 2022; 119:e2204150119. [PMID: 35486700 PMCID: PMC9171377 DOI: 10.1073/pnas.2204150119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Dual-function Spot 42 RNA encodes a 15-amino acid protein that regulates the CRP transcription factor. Proc Natl Acad Sci U S A 2022; 119:e2119866119. [PMID: 35239441 PMCID: PMC8916003 DOI: 10.1073/pnas.2119866119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceDual-function RNAs base pair with target messenger RNAs as small regulatory RNAs and encode small protein regulators. However, only a limited number of these dual-function regulators have been identified. In this study, we show that a well-characterized base-pairing small RNA surprisingly also encodes a 15-amino acid protein. The very small protein binds the cyclic adenosine monophosphate receptor protein transcription factor to block activation of some promoters, raising the question of how many other transcription factors are modulated by unidentified small proteins.
Collapse
|
17
|
Miyakoshi M, Morita T, Kobayashi A, Berger A, Takahashi H, Gotoh Y, Hayashi T, Tanaka K. Glutamine synthetase mRNA releases sRNA from its 3'UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae. eLife 2022; 11:82411. [PMID: 36440827 PMCID: PMC9731577 DOI: 10.7554/elife.82411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and Escherichia coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3'UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukubaJapan,Transborder Medical Research Center, University of TsukubaTsukubaJapan,International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio UniversityTsuruokaJapan,Graduate School of Media and Governance, Keio UniversityFujisawaJapan
| | - Asaki Kobayashi
- Transborder Medical Research Center, University of TsukubaTsukubaJapan
| | - Anna Berger
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | | | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|