1
|
Cela I, Capone E, Pece A, Lovato G, Simeone P, Colasante M, Lamolinara A, Piro A, Iezzi M, Lanuti P, De Laurenzi V, Ippoliti R, Iacobelli S, Sala G. LGALS3BP antibody-drug conjugate enhances tumor-infiltrating lymphocytes and synergizes with immunotherapy to restrain neuroblastoma growth. J Transl Med 2025; 23:431. [PMID: 40217513 PMCID: PMC11992825 DOI: 10.1186/s12967-025-06434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND LGALS3BP, also referred as Gal-3BP, Mac2-BP, or 90 K, is a heavily glycosylated, secreted protein prominently localized at the surface of cancer-derived extracellular vesicles (EVs). Its levels are significantly elevated in various types of cancer, including neuroblastoma, and are generally associated with advanced disease and tumor progression. Our previous research has shown that LGALS3BP is an effective target for ravtansine (DM4)-based Antibody-Drug Conjugate (ADC) therapy in multiple preclinical models. METHODS We assessed total and extracellular vesicles (EVs)-associated LGALS3BP through ELISA assay in serum of a pseudometastatic neuroblastoma model to evaluate the correlation of LGALS3BP levels with tumor dissemination. We employed a syngeneic neuroblastoma mouse model using murine neuroblastoma NXS2 cells overexpressing human LGALS3BP in order to evaluate immunogenic cell death (ICD) induced by anti-LGALS3BP ADC therapy and investigated the nature of the tumor immune infiltrate by cytofluorimetry. Furthermore, we designed a six-arm in vivo experiment to evaluate the efficacy of ADC in combination with an immune check-point inhibitor (ICI) anti-PD-1. Finally, a rechallenge assay was conducted on cured mice to assess the presence of immunological memory. RESULTS Here, we report that circulating and EVs-associated LGALS3BP levels significantly correlate with neuroblastoma progression and dissemination. Moreover, we show that in the syngeneic NXS2 neuroblastoma model, DM4 treatment induces cell surface expression of ICD markers calreticulin, HSP70, and HSP90, and an increased PD-L1 expression in vitro, followed by enhanced tumor-infiltrating lymphocytes in vivo. Notably, the combination therapy of anti-LGALS3BP-targeting ADC with anti-PD-1 results in a higher inhibition of tumor growth and prolonged survival compared with either agent given alone. Rechallenge assay reveals that mice previously treated and cured with the ADC retain immune memory, suggesting the therapy's ability to induce a durable and protective antitumor immune response. CONCLUSIONS Our findings establish that circulating LGALS3BP is a potential biomarker for liquid biopsy and uncover this protein as a suitable target for therapeutic strategies combining 1959-sss/DM4 ADC with an anti-PD-1 ICI for the treatment of LGALS3BP expressing neuroblastoma.
Collapse
MESH Headings
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Extracellular Vesicles/immunology
- Extracellular Vesicles/metabolism
- Cell Line, Tumor
- Animals
- Mice
- Xenograft Model Antitumor Assays
- Immunogenic Cell Death/drug effects
- Immunogenic Cell Death/immunology
- Drug Synergism
- Neuroblastoma/blood
- Neuroblastoma/drug therapy
- Neuroblastoma/immunology
- Neuroblastoma/pathology
- Disease Progression
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Immunologic Memory/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Humans
- Male
- Female
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Science, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi, 11, Chieti Scalo, Chieti, 66100, Italy
| | - Asia Pece
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giulio Lovato
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pasquale Simeone
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Martina Colasante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, Coppito, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi, 11, Chieti Scalo, Chieti, 66100, Italy
| | - Anna Piro
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi, 11, Chieti Scalo, Chieti, 66100, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, Coppito, Italy
| | | | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
2
|
Kim SS, Park I, Kim J, Ka NL, Lim GY, Park MY, Hwang S, Kim JE, Park SY, Kim JS, Rhee HW, Lee MO. Secreted LGALS3BP facilitates distant metastasis of breast cancer. Breast Cancer Res 2025; 27:4. [PMID: 39789641 PMCID: PMC11715970 DOI: 10.1186/s13058-024-01958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets. METHODS We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC. The increased expression of LGALS3BP was validated using western blotting, qPCR, ELISA, and IF. Chromatin immunoprecipitation was applied to analyze estrogen-dependent regulation of LGALS3BP transcription. The adhesive and angiogenic functions of LGALS3BP were evaluated by abrogating LGALS3BP expression using either shRNA-mediated knockdown or a neutralizing antibody. Xenograft mouse experiments were employed to assess the in vivo metastatic potential of TAMR cells and the LGALS3BP protein. Clinical evaluation of LGALS3BP risk was carried out with refractory clinical specimens from tamoxifen-treated ER-positive BC patients and publicly available databases. RESULTS TAMR secretome analysis revealed that 176 proteins were secreted at least 2-fold more from MCF7/TAMR cells than from sensitive cells, and biological processes such as cell adhesion and angiogenesis were associated with the TAMR secretome. Galectin-3 binding protein (LGALS3BP) was one of the top 10 most highly secreted proteins in the TAMR secretome. The expression level of LGALS3BP was suppressed by estrogen signaling, which involves direct ERα binding to its promoter region. Secreted LGALS3BP in the TAMR secretome helped BC cells adhere to the extracellular matrix and promoted the tube formation of human umbilical vein endothelial cells. Compared with sensitive cells, xenograft animal experiments with MCF7/TAMR cells showed increased pulmonary metastasis, which completely disappeared in LGALS3BP-knockdown TAMR cells. Finally, higher levels of LGALS3BP were associated with poor prognosis in ER-positive BC patients treated with adjuvant tamoxifen in the clinic. CONCLUSION TAMR secretome analysis identified secretory proteins, such as LGALS3BP, that are involved in biological processes closely related to metastasis. Secreted LGALS3BP from the TAMR cells promoted adhesion of the cells to the extracellular matrix and vasculature formation, which may support metastasis of TAMR cells.
Collapse
Affiliation(s)
- Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Issac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ye Park
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Ji-Eun Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Cin M, Akyıldız İğdem A, Bektaş S, Gündoğar Ö, Cin S, Komut N, Çetin B. Is Immunohistochemical Galectin-3 Expression Associated with the Epithelial-Mesenchymal Transition in High- and Low-Grade Invasive Urothelial Carcinomas of the Bladder? Diagnostics (Basel) 2024; 14:2270. [PMID: 39451592 PMCID: PMC11506668 DOI: 10.3390/diagnostics14202270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Bladder cancer, predominantly urothelial carcinoma, is an important malignancy of the urinary system. Despite the same histologic grade and stage, some patients seem to have a worse prognosis. In this context, the epithelial-mesenchymal transition (EMT), characterized by the loss of E-cadherin and gain of vimentin expression, is an important process in tumor progression. Galectin-3, a lactose-binding protein involved in various cellular processes, has been associated with increased tumor cell migration, invasion, and treatment resistance. Methods: In this study, 223 bladder cancer cases were examined, and E-cadherin, vimentin, and galectin-3 expression was evaluated by immunohistochemical staining in tumor budding areas and invasive components. These markers were also correlated with clinicopathological parameters, including tumor grade and stage. Results: The results indicated a significant decrease in E-cadherin expression and an increase in vimentin staining in higher-grade and higher-stage tumors, supporting EMT involvement. Galectin-3 expression was notably higher in T1 high-grade tumors but decreased in T2 stage tumors. Despite this, no significant correlation was found between galectin-3 and E-cadherin or vimentin, suggesting a complex role of galectin-3 in EMT. Conclusions: High galectin-3 expression in T1 high-grade tumors highlights its potential role in early tumor progression and as a therapeutic target. However, the decrease in its expression in advanced stages underscores the need for further research to understand its multifaceted involvement in bladder cancer. These findings suggest that while galectin-3 may contribute to the EMT and early tumor progression, its exact role and potential as a therapeutic target require more detailed investigation.
Collapse
Affiliation(s)
- Merve Cin
- Department of Pathology, Istanbul Training and Research Hospital, University of Health Sciences, 34098 Istanbul, Turkey
| | | | - Sibel Bektaş
- Department of Pathology, Gaziosmanspasa Education and Research Hospital, University of Health Sciences, 34255 Istanbul, Turkey; (S.B.); (Ö.G.)
| | - Özgecan Gündoğar
- Department of Pathology, Gaziosmanspasa Education and Research Hospital, University of Health Sciences, 34255 Istanbul, Turkey; (S.B.); (Ö.G.)
| | - Selçuk Cin
- Department of Pathology, Bagcilar Training and Research Hospital, University of Health Sciences, 34200 Istanbul, Turkey;
| | - Neslihan Komut
- Department of Pathology, Tekirdag Dr. Ismail Fehmi Cumalioglu City Hospital, 59030 Tekirdag, Turkey;
| | - Buğra Çetin
- Department of Urology, Bahcelievler Medicalpark Hospital, Altinbas University, 34180 Istanbul, Turkey;
| |
Collapse
|
4
|
Cai D, He F, Wu S, Wang Z, Bian Y, Wen C, Ding K. Functional structural domain synthesis of anti-pancreatic carcinoma pectin-like polysaccharide RN1. Carbohydr Polym 2024; 327:121668. [PMID: 38171659 DOI: 10.1016/j.carbpol.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The great structural and functional diversity supports polysaccharides as favorable candidates for new drug development. Previously we reported that a drug candidate pectin-like natural polysaccharide, RN1 might target galectin-3 (Gal-3) to impede pancreatic cancer cell growth in vivo. However, the quality control of polysaccharide-based drug research faces great challenges due to the heterogeneity. A potential solution is to synthesize structurally identified subfragments of this polysaccharide as alternatives. In this work, we took RN1 as an example, and synthesized five subfragments derived from the putative repeating units of RN1. Among them, pentasaccharide 4 showed an approximative binding affinity to Gal-3 in vitro, as well as an antiproliferative activity against pancreatic BxPC-3 cells comparable to that of RN1. Further, we scaled up pentasaccharide 4 to gram-scale in an efficient synthetic route with a 6.9 % yield from D-galactose. Importantly, pentasaccharide 4 significantly suppressed the growth of pancreatic tumor in vivo. Based on the mechanism complementarity of galactin-3 inhibitor and docetaxel, the combination administration of pentasaccharide 4 and docetaxel afforded better result. The result suggested pentasaccharide 4 was one of the functional structural domains of polysaccharide RN1 and might be a leading compound for anti-pancreatic cancer new drug development.
Collapse
Affiliation(s)
- Deqin Cai
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei He
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Wu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Wang
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Bian
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Wen
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kan Ding
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan 528400, China.
| |
Collapse
|
5
|
Beaumont JEJ, Ju J, Barbeau LMO, Demers I, Savelkouls KG, Derks K, Bouwman FG, Wauben MHM, Zonneveld MI, Keulers TGH, Rouschop KMA. GABARAPL1 is essential in extracellular vesicle cargo loading and metastasis development. Radiother Oncol 2024; 190:109968. [PMID: 37898438 DOI: 10.1016/j.radonc.2023.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1+ EV in the metastatic cascade. MATERIALS AND METHODS GABARAPL1 deficient or control MDA-MB-231 cells were injected in murine mammary fat pads. Lungs were dissected and analysed for human cytokeratin 18. EV from control and GABARAPL1 deficient cells exposed to normoxia (21% O2) or hypoxia (O2 < 0.02%) were isolated and analysed by immunoblot, nanoparticle tracking analysis, high resolution flow cytometry, mass spectrometry and next-generation sequencing. Cellular migration and invasion were analysed using scratch assays and transwell-invasion assays, respectively. RESULTS The number of pulmonary metastases derived from GABARAPL1 deficient tumours decreased by 84%. GABARAPL1 deficient cells migrate slower but display a comparable invasive capacity. Both normoxic and hypoxic EV contain proteins and miRNAs associated with metastasis development and, in line, increase cancer cell invasiveness. Although GABARAPL1 deficiency alters EV content, it does not alter the EV-induced increase in cancer cell invasiveness. CONCLUSION GABARAPL1 is essential for metastasis development. This is unrelated to changes in migration and invasion and suggests that GABARAPL1 or GABARAPL1+ EV are essential in other processes related to the metastatic cascade.
Collapse
Affiliation(s)
- Joel E J Beaumont
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jinzhe Ju
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imke Demers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marca H M Wauben
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marijke I Zonneveld
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom G H Keulers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Dimitrijevic Stojanovic M, Stojanovic B, Radosavljevic I, Kovacevic V, Jovanovic I, Stojanovic BS, Prodanovic N, Stankovic V, Jocic M, Jovanovic M. Galectin-3's Complex Interactions in Pancreatic Ductal Adenocarcinoma: From Cellular Signaling to Therapeutic Potential. Biomolecules 2023; 13:1500. [PMID: 37892182 PMCID: PMC10605315 DOI: 10.3390/biom13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Galectin-3 (Gal-3) plays a multifaceted role in the development, progression, and prognosis of pancreatic ductal adenocarcinoma (PDAC). This review offers a comprehensive examination of its expression in PDAC, its interaction with various immune cells, signaling pathways, effects on apoptosis, and therapeutic resistance. Additionally, the prognostic significance of serum levels of Gal-3 is discussed, providing insights into its potential utilization as a biomarker. Critical analysis is also extended to the inhibitors of Gal-3 and their potential therapeutic applications in PDAC, offering new avenues for targeted treatments. The intricate nature of Gal-3's role in PDAC reveals a complex landscape that demands a nuanced understanding for potential therapeutic interventions and monitoring.
Collapse
Affiliation(s)
- Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Ivan Radosavljevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Vojin Kovacevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Prodanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
| | - Miodrag Jocic
- Institute for Transfusiology and Haemobiology, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
7
|
Huang P, Gao W, Fu C, Tian R. Functional and Clinical Proteomic Exploration of Pancreatic Cancer. Mol Cell Proteomics 2023:100575. [PMID: 37209817 PMCID: PMC10388587 DOI: 10.1016/j.mcpro.2023.100575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Pancreatic cancer, most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for PDAC patients, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. Global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement of proteomics technologies has enabled profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.
Collapse
Affiliation(s)
- Peiwu Huang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changying Fu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|