1
|
Karras GI, Colombo G, Kravats AN. Hsp90: Bringing It All Together. Cell Stress Chaperones 2025:S1355-8145(25)00002-1. [PMID: 39889818 DOI: 10.1016/j.cstres.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
Abstract
Heat-shock protein 90 (Hsp90) is an ancient and multifaceted protein-folding machine essential for most organisms. The past 40 years have uncovered remarkable complexity in the regulation and function of Hsp90, which dwarfs in sophistication most other machines in the cell. Here, we propose four analogies to illustrate Hsp90's sophistication: a multifunctional Swiss Army knife, an automobile engine and its controls, a switchboard acting as a hub and directing signals, and an orchestra conductor setting the tempo of a symphony. Although each of these analogies represents some key Hsp90 activities, none of them captures the entirety of Hsp90's complexity. Together, these roles enable Hsp90 to support both homeostasis and differentiation, both cellular stability and adaptability. At the 11th International Conference on the Hsp90 Chaperone Machine, the consensus was that to understand this major guardian of proteostasis, we need to study how the many facets of Hsp90's function influence each other. We hope that these analogies will help to conceptually integrate the many roles of Hsp90 in proteostasis and help the field develop the practical applications of Hsp90 modulators.
Collapse
Affiliation(s)
- Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | | | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
| |
Collapse
|
2
|
Zou Y, Cao P, Bao Z, Xu Y, Xu Z, Guo H. Histological, physiological and transcriptomic analysis in hepatopancreas of Procambarus clarkii under heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117459. [PMID: 39647367 DOI: 10.1016/j.ecoenv.2024.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
In the context of global warming, heat stress poses a threat to aquatic organisms. In the present study, a comprehensive analysis in hepatopancreas from Procambarus clarkii was conducted to examine the histology, physiological changes, and transcriptome alterations after exposed at 32 and 37 ℃ for 24 and 72 h, respectively, with 26 ℃ as the control group. The results demonstrated that the survival rate of P. clarkii decreased significantly with the stress time and the temperature increased, with a corresponding damage to its hepatopancreas. Significant fluctuations were observed in the malondialdehyde (MDA) content, reactive oxygen species (ROS) production, total antioxidant capacity (T-AOC), and activities of pyruvate kinase (PK), hexokinase (HK), alkaline phosphatase (ALP), lysozyme (LYS), acid phosphatase (ACP), fatty acid synthase (FAS), as well as lipoprotein lipase (LPL) in response to different stress conditions (P < 0.05). Heat stress notably altered the expression of genes related to glucose, lipid, and protein metabolism, as well as oxidative phosphorylation pathways. The expression of genes related to protein processing and degradation pathways in the endoplasmic reticulum was up-regulation. On the contrary, the expression of genes related to ER autophagy was suppressed. Simultaneously, the differentially expressed genes (DEGs) were significantly enriched in lysosomal and phagosomal pathways. In summary, heat stress induced oxidative damage, disrupted metabolic pathways, impacted protein processing, and compromised immune defense mechanisms, ultimately resulting in decreased survival rates of P. clarkii. These findings contribute to a deeper understanding of aquatic organisms respond to heat stress.
Collapse
Affiliation(s)
- Yongfeng Zou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Panhui Cao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhiming Bao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, PR China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
3
|
Shoup D, Priola SA. Chaperone-mediated disaggregation of infectious prions releases particles that seed new prion formation in a strain-specific manner. J Biol Chem 2025; 301:108062. [PMID: 39662829 PMCID: PMC11758957 DOI: 10.1016/j.jbc.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
The mammalian prion protein can form infectious, nonnative, and protease resistant aggregates (PrPD), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrPD seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrPC, into more PrPD. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78. We have recently shown that Grp78 sensitizes PrPD to proteases, indicating structural alterations and leading to its degradation. However, the process of chaperone-mediated PrPD disaggregation, the chaperones involved, and the effect of disaggregation on PrPD seeding activity are unclear. We have now monitored the structural modification, disaggregation, and seeding activity of PrPD from two mouse adapted prion strains, 22L and 87V, in the presence of Grp78 and two forms of the Hsp110 disaggregase chaperone family, Hsp105 and Apg-2. We found that both forms of Hsp110 induced similar amounts of disaggregation and structural change in the protease resistant cores of PrPD from both strains. However, 22L PrPD was more susceptible to destabilization and disaggregation by the chaperones than 87V. Surprisingly, despite disaggregation of both strains, only the 22L PrPD aggregates released by the chaperones had seeding activity, with both forms of Hsp110 enhancing the Grp78 mediated release of these aggregates. Our data show that disassembly of PrPD by Grp78 and Hsp110 chaperones can release seeding particles of PrPD in a strain-specific manner, potentially facilitating prion replication and spread.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
5
|
Xu D, Wu Y. Ectoin attenuates cortisone-induced skin issues by suppression GR signaling and the UVB-induced overexpression of 11β-HSD1. J Cosmet Dermatol 2024; 23:4303-4314. [PMID: 39222375 PMCID: PMC11626367 DOI: 10.1111/jocd.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Accelerated pace of modern work and lifestyles subject individuals to various external and psychological stressors, which, in turn, can trigger additional stress through visible signs of fatigue, hair loss, and obesity. As the primary stress hormone affecting skin health, cortisol connects to the glucocorticoid receptor (GR) to aggravate skin issues induced by stress. This activation depends on the expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in skin cells, which locally converts cortisone-produced by the central and peripheral hypothalamic-pituitary-adrenal axis-into its active form. METHODS Our study delves deeper into stress's adverse effects on the skin, including the disruption of keratinocyte structural proteins, the loss of basement membrane proteins, and the degradation of collagen. RESULTS Remarkably, we discovered that Ectoin, an amino acid derivative obtained from halophilic bacteria, is capable of mitigating the inhibitory impacts of cortisone on the expression of cutaneous functional proteins, including involucrin, loricrin, laminin-5, and claudin-1. Moreover, Ectoin reduces the suppressive effect of stress on collagen and hyaluronic acid synthesis by impeding GR signal transduction. Additionally, Ectoin counterbalances the UVB-induced overexpression of 11β-HSD1, thereby diminishing the concentration of endogenous glucocorticoids. CONCLUSION Our findings illuminate the significant potential of Ectoin as a preventative agent against stress-induced skin maladies.
Collapse
Affiliation(s)
- Dailin Xu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| | - Yue Wu
- In Vitro Research DepartmentBloomage Biotechnology Corporation LimitedShanghaiChina
| |
Collapse
|
6
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
7
|
Clarisse D, Van Moortel L, Van Leene C, Gevaert K, De Bosscher K. Glucocorticoid receptor signaling: intricacies and therapeutic opportunities. Trends Biochem Sci 2024; 49:431-444. [PMID: 38429217 DOI: 10.1016/j.tibs.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Chloé Van Leene
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
8
|
Apostolidou D, Zhang P, Pandya D, Bock K, Liu Q, Yang W, Marszalek PE. Tandem repeats of highly bioluminescent NanoLuc are refolded noncanonically by the Hsp70 machinery. Protein Sci 2024; 33:e4895. [PMID: 38284490 PMCID: PMC10804678 DOI: 10.1002/pro.4895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.
Collapse
Affiliation(s)
- Dimitra Apostolidou
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| | - Pan Zhang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Devanshi Pandya
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Kaden Bock
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUnited States
| | - Weitao Yang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| |
Collapse
|
9
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
10
|
Clarisse D, Prekovic S, Vlummens P, Staessens E, Van Wesemael K, Thommis J, Fijalkowska D, Acke G, Zwart W, Beck IM, Offner F, De Bosscher K. Crosstalk between glucocorticoid and mineralocorticoid receptors boosts glucocorticoid-induced killing of multiple myeloma cells. Cell Mol Life Sci 2023; 80:249. [PMID: 37578563 PMCID: PMC10425521 DOI: 10.1007/s00018-023-04900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Vlummens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Eleni Staessens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karlien Van Wesemael
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Guillaume Acke
- Department of Chemistry, Ghent University, Ghent, Belgium
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ilse M Beck
- Department of Health Sciences, Odisee University of Applied Sciences, Ghent, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
11
|
Choudhary D, Mediani L, Avellaneda MJ, Bjarnason S, Alberti S, Boczek EE, Heidarsson PO, Mossa A, Carra S, Tans SJ, Cecconi C. Human Small Heat Shock Protein B8 Inhibits Protein Aggregation without Affecting the Native Folding Process. J Am Chem Soc 2023. [PMID: 37411010 PMCID: PMC10360156 DOI: 10.1021/jacs.3c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.
Collapse
Affiliation(s)
- Dhawal Choudhary
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Mario J Avellaneda
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Edgar E Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Alessandro Mossa
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- INFN Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Sander J Tans
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
12
|
Bao Y, Cui S. Single-Chain Inherent Elasticity of Macromolecules: From Concept to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3527-3536. [PMID: 36848243 DOI: 10.1021/acs.langmuir.2c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
"The Tao begets the One. One begets all things of the world." These words of wisdom from Tao Te Ching are of great inspiration to scientists in polymer materials science and engineering: The "One" means an individual polymer chain while polymer materials consist of numerous chains. The understanding of the single-chain mechanics of polymers is crucial for the bottom-up rational design of polymer materials. With a backbone and side chains, a polymer chain is more complex than a small molecule. Moreover, an individual polymer chain is usually placed in a complicated environment (such as solvent, cosolute, and solid surface), which significantly affects the behaviors of the chain. With all these factors, it is hard to fully understand the elastic behaviors of polymers. Herein, we will first introduce the concept of the single-chain inherent elasticity of polymers, which is a fundamental property determined by the polymer backbone. Then, the applications of inherent elasticity in quantifying the effects of side chains and surrounding environment will be summarized. Finally, the challenges in related fields at present and potential research directions in the future will be discussed.
Collapse
Affiliation(s)
- Yu Bao
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
13
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
14
|
Rief M, Žoldák G. Single-molecule mechanical studies of chaperones and their clients. BIOPHYSICS REVIEWS 2022; 3:041301. [PMID: 38505517 PMCID: PMC10903372 DOI: 10.1063/5.0098033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/12/2022] [Indexed: 03/21/2024]
Abstract
Single-molecule force spectroscopy provides access to the mechanics of biomolecules. Recently, magnetic and laser optical tweezers were applied in the studies of chaperones and their interaction with protein clients. Various aspects of the chaperone-client interactions can be revealed based on the mechanical probing strategies. First, when a chaperone is probed under load, one can examine the inner workings of the chaperone while it interacts with and works on the client protein. Second, when protein clients are probed under load, the action of chaperones on folding clients can be studied in great detail. Such client folding studies have given direct access to observing actions of chaperones in real-time, like foldase, unfoldase, and holdase activity. In this review, we introduce the various single molecule mechanical techniques and summarize recent single molecule mechanical studies on heat shock proteins, chaperone-mediated folding on the ribosome, SNARE folding, and studies of chaperones involved in the folding of membrane proteins. An outlook on significant future developments is given.
Collapse
Affiliation(s)
- Matthias Rief
- Center for Functional Protein Assemblies (CPA), Physik Department, Technische Universität München, Ernst-Otto-Fischer-Str., 8, D-85748 Garching, Germany
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
15
|
Backe SJ, Sager RA, Regan BR, Sit J, Major LA, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep 2022; 40:111039. [PMID: 35830801 PMCID: PMC9306012 DOI: 10.1016/j.celrep.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein-90 (Hsp90) chaperone machinery is involved in the stability and activity of its client proteins. The chaperone function of Hsp90 is regulated by co-chaperones and post-translational modifications. Although structural evidence exists for Hsp90 interaction with clients, our understanding of the impact of Hsp90 chaperone function toward client activity in cells remains elusive. Here, we dissect the impact of recently identified higher eukaryotic co-chaperones, FNIP1/2 (FNIPs) and Tsc1, toward Hsp90 client activity. Our data show that Tsc1 and FNIP2 form mutually exclusive complexes with FNIP1, and that unlike Tsc1, FNIP1/2 interact with the catalytic residue of Hsp90. Functionally, these co-chaperone complexes increase the affinity of the steroid hormone receptors glucocorticoid receptor and estrogen receptor to their ligands in vivo. We provide a model for the responsiveness of the steroid hormone receptor activation upon ligand binding as a consequence of their association with specific Hsp90:co-chaperone subpopulations.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bethany R Regan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Julian Sit
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lauren A Major
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|