1
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
2
|
Chen X, Zhang B, Song X, Qian T, Zheng X, Zhang Y, Xu W, Gao Z, Peng L, Xie C. Serum sPD-1 and sPD-L1 as predictive biomarkers for HBsAg clearance in HBeAg-negative CHB patients undergoing IFN-based therapy. Aliment Pharmacol Ther 2024; 60:593-603. [PMID: 38923559 DOI: 10.1111/apt.18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIMS For chronic hepatitis B (CHB) patients, there is still a need to improve hepatitis B surface antigen (HBsAg) clearance rates. This study aimed to assess the predictive effectiveness of soluble programmed cell death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) for HBsAg clearance in HBeAg-negative CHB patients undergoing peginterferon (Peg-IFN)-based antiviral treatment. METHODS This study encompassed 280 patients undergoing treatment with Peg-IFNα. Serum levels of sPD-1 and sPD-L1 were measured using ELISA kits at baseline, as well as at 12, 24 and 48 weeks. The primary endpoint of the study was the determination of HBsAg clearance at 48 weeks. Logistic regression analysis was employed to identify predictors of HBsAg clearance. RESULTS The clearance group demonstrated significantly lower serum sPD-L1 levels compared to the non-clearance group. While both groups exhibited an increase in sPD-1 levels, only the clearance group showed a rise in sPD-L1 levels. Multivariate analysis identified sPD-L1 increase at 24 weeks, and HBsAg decline at 24 weeks as predictors for HBsAg clearance at 48 weeks. The combined use of these indicators showed a predictive performance for HBsAg clearance with an AUROC of 0.907 (95% CI: 0.861-0.953, p < 0.001). CONCLUSIONS The study revealed an inverse relationship between the trends of sPD-1/sPD-L1 and HBsAg clearance during combined IFN and NAs treatment. Moreover, the magnitude of HBsAg reduction and sPD-L1 increase emerged as significant predictors for HBsAg clearance.
Collapse
Affiliation(s)
- Xiyao Chen
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Boxiang Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tinglin Qian
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xingrong Zheng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
4
|
Rodríguez-Rodríguez N, Rosetti F, Crispín JC. CD8 is down(regulated) for tolerance. Trends Immunol 2024; 45:442-453. [PMID: 38782625 DOI: 10.1016/j.it.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Activated CD8+ T cells directly kill target cells. Therefore, the regulation of their function is central to avoiding immunopathology. Mechanisms that curb effector functions in CD4+ and CD8+ T cells are mostly shared, yet important differences occur. Here, we focus on the control of CD8+ T cell activity and discuss the importance of a poorly understood aspect of tolerance that directly impairs engagement of target cells: the downregulation of CD8. We contextualize this process and propose that it represents a key element during CD8+ T cell modulation.
Collapse
Affiliation(s)
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.
| |
Collapse
|
5
|
Tang X, Shang Y, Yang H, Song Y, Li S, Qin Y, Song J, Chen K, Liu Y, Zhang D, Chen L. Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nat Commun 2024; 15:1673. [PMID: 38396052 PMCID: PMC10891058 DOI: 10.1038/s41467-024-46025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Xudong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hong Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yalan Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shan Li
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yusi Qin
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingyi Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kang Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Biemond M, Vremec D, Gray DHD, Hodgkin PD, Heinzel S. Programmed death receptor 1 (PD-1) ligand Fc fusion proteins reduce T-cell proliferation in vitro independently of PD-1. Immunol Cell Biol 2024; 102:117-130. [PMID: 38069638 PMCID: PMC10952853 DOI: 10.1111/imcb.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024]
Abstract
Programmed death receptor 1 (PD-1) is an inhibitory receptor on T cells shown to restrain T-cell proliferation. PD-1 immune checkpoint blockade has emerged as a highly promising approach in cancer treatment. Much of our understanding of the function of PD-1 is derived from in vitro T-cell activation assays. Here we set out to further investigate how T cells integrate inhibitory signals such as PD-1 in vitro using the PD-1 agonist, PD-1 ligand 1 (PD-L1) fusion protein (PD-L1.Fc), coimmobilized alongside anti-CD3 agonist monoclonal antibody (mAb) on plates to deliver PD-1 signals to wild-type and PD-1-/- CD8+ T cells. Surprisingly, we found that the PD-L1.Fc fusion protein inhibited T-cell proliferation independently of PD-1. This PD-L1.Fc inhibition was observed in the presence and absence of CD28 and interleukin-2 signaling. Binding of PD-L1.Fc was restricted to PD-1-expressing T cells and thus inhibition was not mediated by the interaction of PD-L1.Fc with CD80 or other yet unknown binding partners. Furthermore, a similar PD-1-independent reduction of T-cell proliferation was observed with plate-bound PD-L2.Fc. Hence, our results suggest that the coimmobilization of PD-1 ligand fusion proteins with anti-CD3 mAb leads to a reduction of T-cell engagement with plate-bound anti-CD3 mAb. This study demonstrates a nonspecific mechanism of T-cell inhibition when PD-L1.Fc or PD-L2.Fc fusion proteins are delivered in a plate-bound coimmobilization assay and highlights the importance of careful optimization of assay systems and reagents when interpreting their influence on T-cell proliferation.
Collapse
Affiliation(s)
- Melissa Biemond
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
- Present address:
Department of ImmunologyLeiden University Medical CenterLeidenThe Netherlands
| | - David Vremec
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Daniel HD Gray
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Philip D Hodgkin
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Susanne Heinzel
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
7
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
8
|
May JF, Kelly RG, Suen AYW, Kim J, Kim J, Anderson CC, Rayat GR, Baldwin TA. Establishment of CD8+ T Cell Thymic Central Tolerance to Tissue-Restricted Antigen Requires PD-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:271-283. [PMID: 37982696 DOI: 10.4049/jimmunol.2200775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Highly self-reactive T cells are censored from the repertoire by both central and peripheral tolerance mechanisms upon receipt of high-affinity TCR signals. Clonal deletion is considered a major driver of central tolerance; however, other mechanisms such as induction of regulatory T cells and functional impairment have been described. An understanding of the interplay between these different central tolerance mechanisms is still lacking. We previously showed that impaired clonal deletion to a model tissue-restricted Ag did not compromise tolerance. In this study, we determined that murine T cells that failed clonal deletion were rendered functionally impaired in the thymus. Programmed cell death protein 1 (PD-1) was induced in the thymus and was required to establish cell-intrinsic tolerance to tissue-restricted Ag in CD8+ thymocytes independently of clonal deletion. In bone marrow chimeras, tolerance was not observed in PD-L1-deficient recipients, but tolerance was largely maintained following adoptive transfer of tolerant thymocytes or T cells to PD-L1-deficient recipients. However, CRISPR-mediated ablation of PD-1 in tolerant T cells resulted in broken tolerance, suggesting different PD-1 signaling requirements for establishing versus maintaining tolerance. Finally, we showed that chronic exposure to high-affinity Ag supported the long-term maintenance of tolerance. Taken together, our study identifies a critical role for PD-1 in establishing central tolerance in autoreactive T cells that escape clonal deletion. It also sheds light on potential mechanisms of action of anti-PD-1 pathway immune checkpoint blockade and the development of immune-related adverse events.
Collapse
Affiliation(s)
- Julia F May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Rees G Kelly
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Y W Suen
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jeongbee Kim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jeongwoo Kim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Colin C Anderson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Ray Rajotte Surgical-Medical Research Institute, AB Diabetes and Transplant Institutes, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Liu J, Liu W, Huang J, Wang Y, Zhao B, Zeng P, Cai G, Chen R, Hu K, Tu Y, Lin M, Kong J, Tao J, Chen L. The modulation effects of the mind-body and physical exercises on the basolateral amygdala-temporal pole pathway on individuals with knee osteoarthritis. Int J Clin Health Psychol 2024; 24:100421. [PMID: 38077287 PMCID: PMC10709058 DOI: 10.1016/j.ijchp.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024] Open
Abstract
Background/Objective To investigate the modulatory effects of different physical exercise modalities on connectivity of amygdala subregions and its association with pain symptoms in patients with knee osteoarthritis (KOA). Methods 140 patients with KOA were randomly allocated either to the Tai Chi, Baduanjin, Stationary cycling, or health education group and conducted a 12 week-long intervention in one of the four groups. The behavioral, magnetic resonance imaging (MRI), and blood data were collected at baseline and the end of the study. Results Compared to the control group, all physical exercise modalities lead to significant increases in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score (pain relief) and serum Programmed Death-1 (PD-1) levels. Additionally, all physical exercise modalities resulted in decreased resting state functional connectivity (rsFC) of the basolateral amygdala (BA)-temporal pole and BA-medial prefrontal cortex (mPFC). The overlapping BA-temporal pole rsFC observed in both Tai Chi and Baduanjin groups was significantly associated with pain relief, while the BA-mPFC rsFC was significantly associated with PD-1 levels. In addition, we found increased fractional anisotropy (FA) values, a measurement of water diffusion anisotropy of tissue that responded to changes in brain microstructure, within the mind-body exercise groups' BA-temporal pole pathway. The average FA value of this pathway was positively correlated with KOOS pain score at baseline across all subjects. Conclusions Our findings suggest that physical exercise has the potential to modulate both functional and anatomical connectivity of the amygdala subregions, indicating a possible shared pathway for various physical exercise modalities.
Collapse
Affiliation(s)
- Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Weilin Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
| | - Jia Huang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Yajun Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Baoru Zhao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Peiling Zeng
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Guiyan Cai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Ruilin Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Kun Hu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - YouXue Tu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Meiqin Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese, China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese, China
| |
Collapse
|
10
|
Sui Y, Li S, Fu XQ, Zhao ZJ, Xing S. Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease. J Transl Med 2023; 21:109. [PMID: 36765396 PMCID: PMC9921081 DOI: 10.1186/s12967-023-03943-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up. METHODS Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to identify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-protein network, and signaling pathway analyses. RESULTS The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differentially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were correlated with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. CONCLUSION The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point of immune homeostasis.
Collapse
Affiliation(s)
- Yuan Sui
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shuping Li
- grid.266902.90000 0001 2179 3618Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Xue-Qi Fu
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
11
|
CTLA-4 on thymic epithelial cells complements Aire for T cell central tolerance. Proc Natl Acad Sci U S A 2022; 119:e2215474119. [PMID: 36409920 PMCID: PMC9860321 DOI: 10.1073/pnas.2215474119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) are essential for the establishment of T cell central tolerance. The transcription factor Aire plays a key role in this process, but other factors remain understudied. We found that a small population of mTECs expressed the coinhibitory receptor cytotoxic T lymphocyte-associated protein 4 (CTLA-4). These CTLA-4+ cells were detectable in perinates, peaked around young adulthood and expanded sixfold in the absence of Aire. Single-cell transcriptomics revealed CTLA-4+ mTECs to express a distinct gene signature encoding molecules associated with antigen presentation and interferon-gamma signaling. Mice conditionally lacking CTLA-4 in thymic epithelial cells had no major immunological deficiencies but displayed a mildly increased inflammatory tone and a partial defect in the generation of Foxp3+CD4+ regulatory T cells. Consequently, these mice developed modest levels of autoantibodies and lymphocytic infiltration of peripheral tissues. Thus, CTLA-4 expression in mTECs complements Aire to establish T cell central tolerance.
Collapse
|