1
|
Zoratto N, Klein‐Cerrejon D, Gao D, Inchiparambil T, Sachs D, Luo Z, Leroux J. A Bioinspired and Cost-Effective Device for Minimally Invasive Blood Sampling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308809. [PMID: 38450888 PMCID: PMC11095219 DOI: 10.1002/advs.202308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Conventional venipuncture is invasive and challenging in low and middle-income countries. Conversely, point-of-care devices paired with fingersticks, although less invasive, suffer from high variability and low blood volume collection. Recently approved microsampling devices address some of these issues but remain cost-prohibitive for resource-limited settings. In this work, a cost-effective microsampling device is described for the collection of liquid blood with minimal invasiveness and sufficient volume retrieval for laboratory analyses or immediate point-of-care testing. Inspired by the anatomy of sanguivorous leeches, the single-use device features a storage compartment for blood collection and a microneedle patch hidden within a suction cup. Finite Element Method simulations, corroborated by mechanical analyses, guide the material selection for device fabrication and design optimization. In piglets, the device successfully collects ≈195 µL of blood with minimal invasiveness. Additionally, a tailor-made lid and adapter enable safe fluid transportation and integration with commercially available point-of-care systems for on-site analyses, respectively. Taken together, the proposed platform holds significant promise for enhancing healthcare in the pediatric population by improving patient compliance and reducing the risk of needlestick injuries through concealed microneedles. Most importantly, given its cost-effective fabrication, the open-source microsampling device may have a meaningful impact in resource-limited healthcare settings.
Collapse
Affiliation(s)
- Nicole Zoratto
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - David Klein‐Cerrejon
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - Tino Inchiparambil
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| | - David Sachs
- Institute for Mechanical SystemsDepartment of Mechanical and Process EngineeringETHZurich8093Switzerland
| | - Zhi Luo
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P.R. China
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETHZurich8093Switzerland
| |
Collapse
|
2
|
Lee J, Hwang GW, Lee BS, Park NJ, Kim SN, Lim D, Kim DW, Lee YS, Park HK, Kim S, Kim JW, Yi GR, Kim KH, Pang C. Artificial Octopus-Limb-Like Adhesive Patches for Cupping-Driven Transdermal Delivery with Nanoscale Control of Stratum Corneum. ACS NANO 2024. [PMID: 38254288 DOI: 10.1021/acsnano.3c09304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk 27469, Republic of Korea
| | - Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Luo Z, Klein Cerrejon D, Römer S, Zoratto N, Leroux JC. Boosting systemic absorption of peptides with a bioinspired buccal-stretching patch. Sci Transl Med 2023; 15:eabq1887. [PMID: 37756378 DOI: 10.1126/scitranslmed.abq1887] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 09/29/2023]
Abstract
Biopharmaceuticals, including proteins and peptides, have revolutionized the treatment of a wide range of diseases, from diabetes and cardiovascular disorders to virus infections and cancer. Despite their efficacy, most of these macromolecular drugs require parenteral administration because of their high molecular weight and relative instability. Over the past 40 years, only a few oral peptide drugs have entered clinical trials, even when formulated with substantial amounts of permeation enhancers. To overcome the epithelial barrier, devices that inject drugs directly into the gastrointestinal mucosa have been proposed recently. However, the robustness and safety of those complex systems are yet to be assessed. In this study, we introduced an innovative technology to boost drug absorption by synergistically combining noninvasive stretching of the buccal mucosa with permeation enhancers. Inspired by the unique structural features of octopus suckers, a self-applicable suction patch was engineered, enabling strong adhesion to and effective mechanical deformation of the mucosal tissue. In dogs, this suction patch achieved bioavailability up to two orders of magnitude higher than those of the commercial tablet formulation of desmopressin, a peptide drug known for its poor oral absorption. Moreover, systemic exposure comparable to that of the approved oral semaglutide tablet was achieved without further optimization. Last, a first-in-human study involving 40 healthy participants confirmed the dosage form's acceptability, thereby supporting the clinical translatability of this simple yet effective platform technology.
Collapse
Affiliation(s)
- Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Römer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Zhang X, Gan J, Fan L, Luo Z, Zhao Y. Bioinspired Adaptable Indwelling Microneedles for Treatment of Diabetic Ulcers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210903. [PMID: 36916986 DOI: 10.1002/adma.202210903] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Microneedles provide an effective strategy for transdermal drug delivery. Many endeavors have been devoted to developing smart microneedles that can respond to and interact with pathophysiological environments. Here, novel bioinspired adaptable indwelling microneedles with therapeutic exosome encapsulation are presented for diabetic wound healing by a combined fabrication strategy of template replication and 3D transfer printing. Such microneedles are composed of mesenchymal stem cell (MSC)-exosomes-encapsulated adjustable poly(vinyl alcohol) (PVA) hydrogel needle tips and detachable 3M medical tape supporting substrate. As the mechanical strength of the PVA hydrogel is ionically responsive due to Hofmeister effects, the hardness of the resultant microneedle tips can be upregulated by sulfate ions to ensure skin penetration and be softened by nitrate ions after tip-substrate detachment to adapt to the surrounding tissue and release exosomes. Because the MSC-exosomes can effectively activate fibroblasts, vascular endothelial cells, and macrophages, the indwelling microneedles are demonstrated with the function of promoting tissue regeneration and diabetic wound healing in full-thickness cutaneous wounds of diabetic rat models. These features indicate that the bioinspired adaptable indwelling microneedles are with practical values and clinical prospects in tissue and wound regeneration.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| |
Collapse
|
5
|
Yang Y, Zhou R, Wang Y, Zhang Y, Yu J, Gu Z. Recent Advances in Oral and Transdermal Protein Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202214795. [PMID: 36478123 DOI: 10.1002/anie.202214795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Protein and peptide drugs are predominantly administered by injection to achieve high bioavailability, but this greatly compromises patient compliance. Oral and transdermal drug delivery with minimal invasiveness and high adherence represent attractive alternatives to injection administration. However, oral and transdermal administration of bioactive proteins must overcome biological barriers, namely the gastrointestinal and skin barriers, respectively. The rapid development of new materials and technologies promises to address these physiological obstacles. This review provides an overview of the latest advances in oral and transdermal protein delivery, including chemical strategies, synthetic nanoparticles, medical microdevices, and biomimetic systems for oral administration, as well as chemical enhancers, physical approaches, and microneedles in transdermal delivery. We also discuss challenges and future perspectives of the field with a focus on innovation and translation.
Collapse
Affiliation(s)
- Yinxian Yang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Zhou
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanfang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Sebastia-Saez D, Benaouda F, Lim CH, Lian G, Jones SA, Cui L, Chen T. In-Silico Modelling of Transdermal Delivery of Macromolecule Drugs Assisted by a Skin Stretching Hypobaric Device. Pharm Res 2023; 40:295-305. [PMID: 36348132 PMCID: PMC9911480 DOI: 10.1007/s11095-022-03423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To develop a simulation model to explore the interplay between mechanical stretch and diffusion of large molecules into the skin under locally applied hypobaric pressure, a novel penetration enhancement method. METHODS Finite element method was used to model the skin mechanical deformation and molecular diffusion processes, with validation against in-vitro transdermal permeation experiments. Simulations and experimental data were used together to investigate the transdermal permeation of large molecules under local hypobaric pressure. RESULTS Mechanical simulations resulted in skin stretching and thinning (20%-26% hair follicle diameter increase, and 21%-27% skin thickness reduction). Concentration of dextrans in the stratum corneum was below detection limit with and without hypobaric pressure. Concentrations in viable epidermis and dermis were not affected by hypobaric pressure (approximately 2 μg [Formula: see text] cm-2). Permeation into the receptor fluid was substantially enhanced from below the detection limit at atmospheric pressure to up to 6 μg [Formula: see text] cm-2 under hypobaric pressure. The in-silico simulations compared satisfactorily with the experimental results at atmospheric conditions. Under hypobaric pressure, satisfactory comparison was attained when the diffusion coefficients of dextrans in the skin layers were increased from [Formula: see text] 10 μm2 [Formula: see text] s-1 to between 200-500 μm2 [Formula: see text] s-1. CONCLUSIONS Application of hypobaric pressure induces skin mechanical stretching and enlarges the hair follicle. This enlargement alone cannot satisfactorily explain the increased transdermal permeation into the receptor fluid under hypobaric pressure. The results from the in-silico simulations suggest that the application of hypobaric pressure increases diffusion in the skin, which leads to improved overall transdermal permeation.
Collapse
Affiliation(s)
- Daniel Sebastia-Saez
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
| | - Faiza Benaouda
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Chui Hua Lim
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
- Unilever R&D Colworth, Bedford, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Liang Cui
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK.
| |
Collapse
|
7
|
Bukhari KA, Khan IA, Ishaq S, Iqbal MO, Alqahtani AM, Alqahtani T, Menaa F. Formulation and Evaluation of Diclofenac Potassium Gel in Sports Injuries with and without Phonophoresis. Gels 2022; 8:612. [PMID: 36286113 PMCID: PMC9601609 DOI: 10.3390/gels8100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Background: Pain remains a global public heath priority. Phonophoresis, also known as sonophoresis or ultrasonophoresis, is when an ultrasound is used to maximize the effects of a topical drug. Purpose: The objective of this study was to test, in patients injured in sports or accidents (N = 200), the efficacy of diclofenac potassium (DK) 6%, 4%, and 2% formulated gels with and without phonophoresis in comparison with market available standard diclofenac sodium (DS or DN) gel. Methods: The patients were enrolled after informed consent. By using the lottery method, 100 patients were randomly segregated into five groups without phonophoresis and repeated similarly with phonophoresis at a frequency of 0.8 MHz, an intensity of about 1.5 W/cm2, and at continuous mode (2:1). Group-1 was treated with 6% DK gel, group-2 was treated with 4% DK gel, group-3 was treated with 2% DK gel, group-4 was treated with 4% DS gel and group-5 was given control gel three to four times a week for 4 weeks. The patients were screened by using NPRS and WOMAC scales. They were assessed on the baseline, 4th session, 8th session, 12th session, and 16th session. Results: Significant dose-dependently relief was observed in NPRS (Numeric Pain Rating Scale) and the WOMAC (Western Ontario McMaster Osteo-Arthritis) index for pain in disability and stiffness for each group treated with DK gel compared to DS gel. Phonophoresis increased these benefits significantly when used after topical application of DK gel or DS gel, and the dose-dependent effects of DK gel plus phonophoresis were stronger than the dose-dependent effects of DS gel plus phonophoresis. The faster and profounder relief was due to phonophoresis, which allows more penetration of the DK gel into the skin as compared to the direct application of DK gel in acute, uncomplicated soft tissue injury, such as plantar fasciitis, bursitis stress injuries, and tendinitis. In addition, DK gel with phonophoresis was well tolerated. Thus, in this personalized clinical setting, according to the degree of inflammation or injured-induced pain, disability, and stiffness, DK gel 6% with phonophoresis appeared more effective and thus more recommendable than DS gel 6% alone or DS gel 6% combined to phonophoresis.
Collapse
Affiliation(s)
- Komal Ammar Bukhari
- Ali-Ul-Murtaza, Department of Rehabilitation Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan
| | - Imran Ahmad Khan
- Ali-Ul-Murtaza, Department of Rehabilitation Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Shahid Ishaq
- Department of Rehabilitation, Bakhtawar Amin Medical and Dental College, Multan 60000, Pakistan
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
- Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Farid Menaa
- Departments of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| |
Collapse
|