1
|
Herring SW, Rafferty KL, Shin DU, Smith K, Baldwin MC. Cyclic loading failed to promote growth in a pig model of midfacial hypoplasia. J Anat 2024; 245:879-893. [PMID: 38562033 PMCID: PMC11442677 DOI: 10.1111/joa.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Yucatan miniature pigs, often used as large animal models in clinical research, are distinguished by a breed-specific midfacial hypoplasia with anterior crossbite. Although this deformity can be corrected by distraction osteogenesis, a less invasive method is desirable. We chose a mechanical cyclic stimulation protocol that has been successful in enhancing sutural growth in small animals and in a pilot study on standard pigs. Yucatan minipigs (n = 14) were obtained in pairs, with one of each pair randomly assigned to sham or loaded groups. All animals had loading implants installed on the right nasal and frontal bones and received labels for cell proliferation and mineral apposition. After a week of healing and under anesthesia, experimental animals received cyclic tensile loads (2.5 Hz, 30 min) delivered to the right nasofrontal suture daily for 5 days. Sutural strains were recorded at the final session for experimental animals. Sham animals received the same treatment except without loading or strain gauge placement. In contrast to pilot results on standard pigs, the treatment did not produce the expected sutural widening and increased growth. Although sutures were not fused and strains were in the normal range, the targeted right nasofrontal suture was narrowed rather than widened, with no statistically significant changes in sutural cell proliferation, mineral apposition, or vascularity. In general, Yucatan minipig sutures were more vascular than those of standard pigs and also tended to have more proliferating cells. In conclusion, either because the sutures themselves are abnormal or because of growth restrictions elsewhere in the skull, this cyclic loading protocol was unable to produce the desired response of sutural widening and growth. This treatment, effective in normal animals, did not improve naturally occurring midfacial hypoplasia in Yucatan minipigs.
Collapse
Affiliation(s)
- Susan W Herring
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Katherine L Rafferty
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - David U Shin
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Kelsey Smith
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Michael C Baldwin
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Xu R, Sheng R, Lin W, Jiang S, Zhang D, Liu L, Lei K, Li X, Liu Z, Zhang X, Wang Y, Seriwatanachai D, Zhou X, Yuan Q. METTL3 Modulates Ctsk + Lineage Supporting Cranial Osteogenesis via Hedgehog. J Dent Res 2024; 103:734-744. [PMID: 38752256 DOI: 10.1177/00220345241245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
N6-methyladenosine (m6A) modification, a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), plays a pivotal role in stem cell fate determination. Calvarial bone development and maintenance are orchestrated by the cranial sutures. Cathepsin K (CTSK)-positive calvarial stem cells (CSCs) contribute to mice calvarial ossification. However, the role of m6A modification in regulating Ctsk+ lineage cells during calvarial development remains elusive. Here, we showed that METTL3 was colocalized with cranial nonosteoclastic Ctsk+ lineage cells, which were also associated with GLI1 expression. During neonatal development, depletion of Mettl3 in the Ctsk+ lineage cells delayed suture formation and decreased mineralization. During adulthood maintenance, loss of Mettl3 in the Ctsk+ lineage cells impaired calvarial bone formation, which was featured by the increased bone porosity, enhanced bone marrow cavity, and decreased number of osteocytes with the less-developed cellular outline. The analysis of methylated RNA immunoprecipitation sequencing and RNA sequencing data indicated that loss of METTL3 reduced Hedgehog (Hh) signaling pathway. Restoration of Hh signaling pathway by crossing Sufufl/+ alleles or by local administration of SAG21 partially rescued the abnormity. Our data indicate that METTL3 modulates Ctsk+ lineage cells supporting calvarial bone formation by regulating the Hh signaling pathway, providing new insights for clinical treatment of skull vault osseous diseases.
Collapse
Affiliation(s)
- R Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Sheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - K Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Seriwatanachai
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - X Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang Y, Qin Q, Wang Z, Negri S, Sono T, Tower RJ, Li Z, Xing X, Archer M, Thottappillil N, Zhu M, Suarez A, Kim DH, Harvey T, Fan CM, James AW. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells. Cell Death Dis 2024; 15:420. [PMID: 38886383 PMCID: PMC11183145 DOI: 10.1038/s41419-024-06813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, 37134, Verona, Italy
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Robert J Tower
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Allister Suarez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler Harvey
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Pereur R, Dambroise E. Insights into Craniofacial Development and Anomalies: Exploring Fgf Signaling in Zebrafish Models. Curr Osteoporos Rep 2024; 22:340-352. [PMID: 38739352 DOI: 10.1007/s11914-024-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW To illustrate the value of using zebrafish to understand the role of the Fgf signaling pathway during craniofacial skeletal development under normal and pathological conditions. RECENT FINDINGS Recent data obtained from studies on zebrafish have demonstrated the genetic redundancy of Fgf signaling pathway and have identified new molecular partners of this signaling during the early stages of craniofacial skeletal development. Studies on zebrafish models demonstrate the involvement of the Fgf signaling pathway at every stage of craniofacial development. They particularly emphasize the central role of Fgf signaling pathway during the early stages of the development, which significantly impacts the formation of the various structures making up the craniofacial skeleton. This partly explains the craniofacial abnormalities observed in disorders associated with FGF signaling. Future research efforts should focus on investigating zebrafish Fgf signaling during more advanced stages, notably by establishing zebrafish models expressing mutations responsible for diseases such as craniosynostoses.
Collapse
Affiliation(s)
- Rachel Pereur
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université Paris Cité, INSERM UMR 1163, Imagine Institut, 24 boulevard Montparnasse, 75015, Paris, France
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université Paris Cité, INSERM UMR 1163, Imagine Institut, 24 boulevard Montparnasse, 75015, Paris, France.
| |
Collapse
|
5
|
Zhao T, Tao Z, Zhang G, Zhu J, Du M, Hua F, He H. Fat mass and obesity-associated protein (FTO) affects midpalatal suture bone remodeling during rapid maxillary expansion. Eur J Orthod 2024; 46:cjae009. [PMID: 38376496 DOI: 10.1093/ejo/cjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND The fat mass and obesity-associated protein (FTO) is an RNA demethylase that contributes to several physiological processes. Nonetheless, the impact of FTO on bone remodeling in the midpalatal suture while undergoing rapid maxillary expansion (RME) remains unclear. METHODS First, to explore the expression of FTO in the midpalatal suture during RME, six rats were randomly divided into two groups: Expansion group and Sham group (springs without being activated). Then, suture mesenchymal stem cells (SuSCs) were isolated as in vitro model. The expression of FTO was knocked down by small interfering RNA to study the effect of FTO on the osteogenic differentiation of SuSCs. Finally, to evaluate the function of FTO in the process of bone remodeling in the midpalatal suture, ten rats were randomly divided into two groups: FB23-2 group (10 μM, a small molecule inhibitor of FTO) and DMSO group (control). RESULTS Increased arch width and higher expression of OCN and FTO in the midpalatal area were observed in expansion group (P < .05). In the in vitro model, the mRNA expression levels of Runx2, Bmp2, Col1a1, Spp1, and Tnfrsf11b were decreased (P < .05) upon knocking down FTO. Additionally, the protein levels of RUNX2 and OPN were also decreased (P < 0.05). Adding FB23-2, a small-molecule inhibitor targeting FTO, to the medium of SuSCs caused a decrease in the mRNA expression levels of Runx2, Bmp2, Col1a1, Spp1, and Tnfrsf11b (P < 0.05). There was a statistically significant difference in evaluating the expression of OCN and OPN on the palatal suture between the FB23-2 and DMSO groups (P < .05). LIMITATION The molecular mechanisms by which FTO regulates SuSCs osteogenesis remain to be elucidated. The FTO conditional knock out mouse model can be established to further elucidate the role of FTO during RME. CONCLUSION FTO contributes to the osteogenic differentiation of SuSCs and plays a promoting role in midpalatal suture bone remodeling during the RME.
Collapse
Affiliation(s)
- Tingting Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhendong Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gengming Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiaqi Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Mingyuan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang Hua
- Center for Orthodontics and Pediatric Dentistry at Optics Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan 430223, China
- Center for Evidence-Based Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M15 6FH, United Kingdom
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
7
|
杜 信, 谢 静, 邹 玲. [Advances in Molecular Regulatory Mechanisms of Jaw Repair and Reconstruction]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:224-229. [PMID: 38322535 PMCID: PMC10839496 DOI: 10.12182/20240160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Jawbone injuries resulting from trauma, diseases, and surgical resections are commonly seen in clinical practice, necessitating precise and effective strategies for repair and reconstruction to restore both function and aesthetics. The precise and effective repair and the reconstruction of jawbone injuries pose a significant challenge in the field of oral and maxillofacial surgery, owing to the unique biomechanical characteristics and physiological functions of the jawbone. The natural repair process following jawbone injuries involves stages such as hematoma formation, inflammatory response, ossification, and bone remodeling. Bone morphogenetic proteins (BMPs), transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and other growth factors play crucial roles in promoting jawbone regeneration. Cytokines such as interleukins and tumor necrosis factor play dual roles in regulating inflammatory response and bone repair. In recent years, significant progress in molecular biology research has been made in the field of jawbone repair and reconstruction. Tissue engineering technologies, including stem cell therapy, bioactive scaffolds, and growth factor delivery systems, have found important applications in jawbone repair. However, the intricate molecular regulatory mechanisms involved in the complex jawbone repair and reconstruction methods are not fully understood and still require further research. Future research directions will be focused on the precise control of these molecular processes and the development of more efficient combination therapeutic strategies to promote the effective and functional reconstruction of the jawbone. This review aims to examine the latest findings on the molecular regulatory mechanisms of the repair and reconstruction of jawbone injuries and the therapeutic strategies. The conclusions drawn in this article provide a molecular-level understanding of the repair of jawbone injuries and highlight potential directions for future research.
Collapse
Affiliation(s)
- 信眉 杜
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓科 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 静 谢
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓科 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 玲 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓科 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Li B, Li J, Li B, Ouchi T, Li L, Li Y, Zhao Z. A single-cell transcriptomic atlas characterizes age-related changes of murine cranial stem cell niches. Aging Cell 2023; 22:e13980. [PMID: 37681346 PMCID: PMC10652347 DOI: 10.1111/acel.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The craniofacial bones provide structural support for the skull and accommodate the vulnerable brain tissue with a protective cavity. The bone tissue undergoes constant turnover, which relies on skeletal stem cells (SSCs) and/or mesenchymal stem cells (MSCs) and their niches. SSCs/MSCs and their perivascular niche within the bone marrow are well characterized in long bones. As for cranial bones, besides bone marrow, the suture mesenchyme has been identified as a unique niche for SSCs/MSCs of craniofacial bones. However, a comprehensive study of the two different cranial stem cell niches at single-cell resolution is still lacking. In addition, during the progression of aging, age-associated changes in cranial stem cell niches and resident cells remain uncovered. In this study, we investigated age-related changes in cranial stem cell niches via single-cell RNA sequencing (scRNA-seq). The transcriptomic profiles and cellular compositions have been delineated, indicating alterations of the cranial bone marrow microenvironment influenced by inflammaging. Moreover, we identified a senescent mesenchymal cell subcluster and several age-related immune cell subclusters by reclustering and pseudotime trajectory analysis, which might be closely linked to inflammaging. Finally, differentially expressed genes (DEGs) and cell-cell communications were analyzed during aging, revealing potential regulatory factors. Overall, this work highlights the age-related changes in cranial stem cell niches, which deepens the current understanding of cranial bone and suture biology and may provide therapeutic targets for antiaging and regenerative medicine.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | | | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| |
Collapse
|