1
|
Song X, Liu L, Yang H, Chen Y, Huang X, Huang Z, Yang H, Zhang T, Huang Y, Gao HJ, Wang Y. Unusual Geometric and Electronic Structures at Domain Boundaries in a Heterochiral Charge Density Wave Superlattice. ACS NANO 2024; 18:33398-33404. [PMID: 39325018 DOI: 10.1021/acsnano.4c09426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Domain boundaries (DBs) in charge density wave (CDW) systems not only are important for understanding the mechanism of how CDW interplays with other quantum phases but also have potential for future CDW-based nanodevices. However, current research on DBs in CDW materials has been mainly limited to those between homochiral CDW domains, whereas DBs between heterochiral CDW domains, especially in the atomic layers, remain largely unexplored. Here, we have studied the geometric and electronic states of heterochiral DBs in single-layer and bilayer 1T-NbSe2 using scanning tunneling microscopy/spectroscopy. We observe the existence of diverse CDW configurations in a single heterochiral CDW DB with atomic resolution and reveal the corresponding electronic states. In addition, interlayer stacking further enriches the electronic properties of the DB. Our results offer deep insights into the relationship between the detailed CDW nanostructures and electronic behaviors, which has significant implications for DB engineering in strongly correlated CDW systems and related nanodevices.
Collapse
Affiliation(s)
- Xuan Song
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Liwei Liu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yaoyao Chen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyu Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Zeping Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Huixia Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Hwang J, Ruan W, Chen Y, Tang S, Crommie MF, Shen ZX, Mo SK. Charge density waves in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:044502. [PMID: 38518359 DOI: 10.1088/1361-6633/ad36d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.
Collapse
Affiliation(s)
- Jinwoong Hwang
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shujie Tang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, CA, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA 94720, United States of America
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States of America
| |
Collapse
|
3
|
Yao Q, Park JW, Won C, Cheong S, Yeom HW. Kinkless Electronic Junction along 1D Electronic Channel Embedded in a Van Der Waals Layer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307831. [PMID: 38059812 PMCID: PMC10797480 DOI: 10.1002/advs.202307831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Here, the formation of type-I and type-II electronic junctions with or without any structural discontinuity along a well-defined 1 nm-wide 1D electronic channel within a van der Waals layer is reported. Scanning tunneling microscopy and spectroscopy techniques are employed to investigate the atomic and electronic structure along peculiar domain walls formed on the charge-density-wave phase of 1T-TaS2 . Distinct kinds of abrupt electronic junctions with discontinuities of the band gap along the domain walls are found, some of which even do not have any structural kinks and defects. Density-functional calculations reveal a novel mechanism of the electronic junction formation; they are formed by a kinked domain wall in the layer underneath through substantial electronic interlayer coupling. This work demonstrates that the interlayer electronic coupling can be an effective control knob over nanometer-scale electronic property of 2D atomic monolayers.
Collapse
Affiliation(s)
- Qirong Yao
- Center for Artificial Low Dimensional Electronic SystemsInstitute for Basic Science (IBS)Pohang37673South Korea
| | - Jae Whan Park
- Center for Artificial Low Dimensional Electronic SystemsInstitute for Basic Science (IBS)Pohang37673South Korea
| | - Choongjae Won
- Laboratory for Pohang Emergent MaterialsDepartment of PhysicsPohang University of Science and TechnologyPohang37673South Korea
- Max Plank Pohang University of Science and Technology (POSTECH) Center for Complex Phase MaterialsPohang University of Science and TechnologyPohang37673South Korea
| | - Sang‐Wook Cheong
- Laboratory for Pohang Emergent MaterialsDepartment of PhysicsPohang University of Science and TechnologyPohang37673South Korea
- Max Plank Pohang University of Science and Technology (POSTECH) Center for Complex Phase MaterialsPohang University of Science and TechnologyPohang37673South Korea
- Rutgers Center for Emergent Materials and Department of Physics and AstronomyRutgers UniversityPiscatawayNJ08854‐8019USA
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic SystemsInstitute for Basic Science (IBS)Pohang37673South Korea
- Department of PhysicsPohang University of Science and TechnologyPohang37673South Korea
| |
Collapse
|
4
|
Kumar Nayak A, Steinbok A, Roet Y, Koo J, Feldman I, Almoalem A, Kanigel A, Yan B, Rosch A, Avraham N, Beidenkopf H. First-order quantum phase transition in the hybrid metal-Mott insulator transition metal dichalcogenide 4Hb-TaS 2. Proc Natl Acad Sci U S A 2023; 120:e2304274120. [PMID: 37856542 PMCID: PMC10614784 DOI: 10.1073/pnas.2304274120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023] Open
Abstract
Coupling together distinct correlated and topologically nontrivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases, and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here, we investigate the compound 4Hb-TaS2 that interleaves the Mott-insulating state of 1T-TaS2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS2 and the low-temperature superconducting phase it harbors using scanning tunneling spectroscopy. We reveal a thermodynamic phase diagram that hosts a first-order quantum phase transition between a correlated Kondo-like cluster state and a depleted flat band state. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo-like cluster and the depleted flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low-frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
Collapse
Affiliation(s)
- Abhay Kumar Nayak
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Aviram Steinbok
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Yotam Roet
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Jahyun Koo
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Irena Feldman
- Department of Physics, Technion - Israel Institute of Technology, Haifa32000, Israel
| | - Avior Almoalem
- Department of Physics, Technion - Israel Institute of Technology, Haifa32000, Israel
| | - Amit Kanigel
- Department of Physics, Technion - Israel Institute of Technology, Haifa32000, Israel
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Achim Rosch
- Institute for Theoretical Physics, University of Cologne, Zülpicher Str. 77, Köln50937, Germany
| | - Nurit Avraham
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Haim Beidenkopf
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|