1
|
Witharana EP, Iwasaki T, San MH, Jayawardana NU, Kotoda N, Yamamoto M, Nagano Y. Subfamily evolution analysis using nuclear and chloroplast data from the same reads. Sci Rep 2025; 15:687. [PMID: 39753617 PMCID: PMC11698846 DOI: 10.1038/s41598-024-83292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives. The resulting nuclear DNA trees were consistent with existing nuclear evolutionary relationships derived from high-throughput sequencing, but diverged from cp genome-based trees. To elucidate the underlying complex evolutionary processes causing these discordances, we implemented an integrative workflow that utilized multiple alignments of each gene generated by Read2Tree, in conjunction with other phylogenomic methods. Our analysis revealed that incomplete lineage sorting predominantly drives these discordances, while introgression and ancient introgression also contribute to topological discrepancies within certain clades. This study underscores the cost-effectiveness of using the same raw sequencing data for both cp and nuclear DNA analyses in understanding plant evolutionary relationships.
Collapse
Affiliation(s)
- Eranga Pawani Witharana
- Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka.
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
- Graduate School of Advanced Health Science, Saga University, Saga, Japan.
| | | | - Myat Htoo San
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Nadeeka U Jayawardana
- Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Applied BioSciences, Macquarie University, 205B, Culloden Road, Sydney, NSW, Australia
| | - Nobuhiro Kotoda
- Graduate School of Advanced Health Science, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Masashi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
- Graduate School of Advanced Health Science, Saga University, Saga, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
2
|
Yang Y, Yuan H, Yao B, Zhao S, Wang X, Xu L, Zhang L. Genetic Adaptations of the Tibetan Pig to High-Altitude Hypoxia on the Qinghai-Tibet Plateau. Int J Mol Sci 2024; 25:11303. [PMID: 39457085 PMCID: PMC11508817 DOI: 10.3390/ijms252011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The Tibetan Plateau's distinctive high-altitude environment, marked by extreme cold and reduced oxygen levels, presents considerable survival challenges for both humans and mammals. Natural selection has led to the accumulation of adaptive mutations in Tibetan pigs, enabling them to develop distinctive adaptive phenotypes. Here, we aim to uncover the genetic mechanisms underlying the adaptation of Tibetan pigs to high-altitude hypoxia. Therefore, we conducted a systematic analysis of 140 whole-genome sequencing (WGS) data points from different representing pig populations. Our analysis identified a total of 27,614,561 mutations, including 22,386,319 single-nucleotide variants (SNVs) and 5,228,242 insertions/deletions (INDELs, size < 50 bp). A total of 11% (2,678,569) of the SNVs were newly identified in our project, significantly expanding the dataset of genetic variants in Tibetan pigs. Compared to other pig breeds, Tibetan pigs are uniquely adapted to high-altitude environments, exhibiting the highest genetic diversity and the lowest inbreeding coefficient. Employing the composite of multiple signals (CMS) method, we scanned the genome-wide Darwinian positive selection signals and identified 32,499 Tibetan pig positively selected SNVs (TBPSSs) and 129 selected genes (TBPSGs), including 213 newly discovered genes. Notably, we identified eight genes (PHACTR1, SFI1, EPM2A, SLC30A7, NKAIN2, TNNI3K, and PLIN2) with strong nature selection signals. They are likely to improve cardiorespiratory function and fat metabolism to help Tibetan pigs become adapted to the high-altitude environment. These findings provide new insights into the genetic mechanisms of high-altitude adaptation and the adaptive phenotypes of Tibetan pigs.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Y.); (B.Y.); (S.Z.); (X.W.); (L.X.); (L.Z.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Kang Y, Wang Z, An K, Hou Q, Zhang Z, Su J. Introgression drives adaptation to the plateau environment in a subterranean rodent. BMC Biol 2024; 22:187. [PMID: 39218870 PMCID: PMC11368017 DOI: 10.1186/s12915-024-01986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.
Collapse
Affiliation(s)
- Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiqi Hou
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiming Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei, 733200, China.
| |
Collapse
|
4
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
5
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
6
|
An X, Mao L, Wang Y, Xu Q, Liu X, Zhang S, Qiao Z, Li B, Li F, Kuang Z, Wan N, Liang X, Duan Q, Feng Z, Yang X, Liu S, Nevo E, Liu J, Storz JF, Li K. Genomic structural variation is associated with hypoxia adaptation in high-altitude zokors. Nat Ecol Evol 2024; 8:339-351. [PMID: 38195998 DOI: 10.1038/s41559-023-02275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Zokors, an Asiatic group of subterranean rodents, originated in lowlands and colonized high-elevational zones following the uplift of the Qinghai-Tibet plateau about 3.6 million years ago. Zokors live at high elevation in subterranean burrows and experience hypobaric hypoxia, including both hypoxia (low oxygen concentration) and hypercapnia (elevated partial pressure of CO2). Here we report a genomic analysis of six zokor species (genus Eospalax) with different elevational ranges to identify structural variants (deletions and inversions) that may have contributed to high-elevation adaptation. Based on an assembly of a chromosome-level genome of the high-elevation species, Eospalax baileyi, we identified 18 large inversions that distinguished this species from congeners native to lower elevations. Small-scale structural variants in the introns of EGLN1, HIF1A, HSF1 and SFTPD of E. baileyi were associated with the upregulated expression of those genes. A rearrangement on chromosome 1 was associated with altered chromatin accessibility, leading to modified gene expression profiles of key genes involved in the physiological response to hypoxia. Multigene families that underwent copy-number expansions in E. baileyi were enriched for autophagy, HIF1 signalling and immune response. E. baileyi show a significantly larger lung mass than those of other Eospalax species. These findings highlight the key role of structural variants underlying hypoxia adaptation of high-elevation species in Eospalax.
Collapse
Affiliation(s)
- Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Xi Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shangzhe Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhenglei Qiao
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Fang Li
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Tang Y, Ma W, Chen X, Nie G, Zhou C. Four new complete mitochondrial genomes of Gobioninae fishes (Teleostei: Cyprinidae) and their phylogenetic implications. PeerJ 2024; 12:e16632. [PMID: 38259668 PMCID: PMC10802160 DOI: 10.7717/peerj.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
The subfamily Gobioninae is one of the most diverse fish groups within Cyprinidae. Their taxonomy and phylogenetic relationships are not completely resolved. In this study, the complete mitochondrial genomes (mitogenome) of four Gobioninae species (Microphysogobio elongatus, Microphysogobio chinssuensis, Gobio rivuloides and Rhinogobio nasutus) were sequenced and compared. The mitogenomes of four species ranges from 16603 bp to 16609 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a control region. Most PCGs had significant codon usage bias. Except for the tRNASer (GCT), all the nucleotide substitutions of tRNA loops higher than the stems could fold into a stable secondary structure. The nucleotide compositions of Gobioninae mitogenome were biased toward A/T, and NAD4 was subjected to low purification selection and had a faster evolution rate among 13 PCGs. Bayesian inference and maximum likelihood phylogenetic analyses showed the consistent results. The four sequenced species clustered together with their congener species. However, more samples and mitogenome data are needed to untangle the phylogenetic relationships among genera Microphysogobio, Romanogobio, Hugobio, Biwia and Platysmacheilus.
Collapse
Affiliation(s)
- Yongtao Tang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan province, The People’s Republic of China
| | - Wenwen Ma
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan province, The People’s Republic of China
| | - Xin Chen
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan province, The People’s Republic of China
| | - Guoxing Nie
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan province, The People’s Republic of China
| | - Chuanjiang Zhou
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan province, The People’s Republic of China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, China
| |
Collapse
|
8
|
Hu H, Wang Q, Hao G, Zhou R, Luo D, Cao K, Yan Z, Wang X. Insights into the phylogenetic relationships and species boundaries of the Myricaria squamosa complex (Tamaricaceae) based on the complete chloroplast genome. PeerJ 2023; 11:e16642. [PMID: 38099308 PMCID: PMC10720482 DOI: 10.7717/peerj.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Myricaria plants are widely distributed in Eurasia and are helpful for windbreak and embankment protection. Current molecular evidence has led to controversy regarding species boundaries within the Myricaria genus and interspecific phylogenetic relationships between three specific species-M. bracteata, M. paniculata and M. squamosa-which have remained unresolved. This study treated these three unresolved taxa as a species complex, named the M. squamosa complex. The genome skimming approach was used to determine 35 complete plastome sequences and nuclear ribosomal DNA sequences for the said complex and other closely related species, followed by de novo assembly. Comparative analyses were conducted across Myricaria to identify the genome size, gene content, repeat type and number, SSR (simple sequence repeat) abundance, and codon usage bias of chloroplast genomes. Tree-based species delimitation results indicated that M. bracteata, M. paniculata and M. squamosa could not be distinguished and formed two monophyletic lineages (P1 and P2) that were clustered together. Compared to plastome-based species delimitation, the standard nuclear DNA barcode had the lowest species resolution, and the standard chloroplast DNA barcode and group-specific barcodes delimitated a maximum of four out of the five species. Plastid phylogenomics analyses indicated that the monophyletic M. squamosa complex is comprised of two evolutionarily significant units: one in the western Tarim Basin and the other in the eastern Qinghai-Tibet Plateau. This finding contradicts previous species discrimination and promotes the urgent need for taxonomic revision of the threatened genus Myricaria. Dense sampling and plastid genomes will be essential in this effort. The super-barcodes and specific barcode candidates outlined in this study will aid in further studies of evolutionary history.
Collapse
Affiliation(s)
- Huan Hu
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Guoqian Hao
- School of Life Science and Food Engineering, Yibin University, Yibin, China
| | - Ruitao Zhou
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Dousheng Luo
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Kejun Cao
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Zhimeng Yan
- School of Medical Information Engineering, Zunyi Medical University, Zunyi, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecol Evol 2023; 13:e10565. [PMID: 37753310 PMCID: PMC10518754 DOI: 10.1002/ece3.10565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cenococcum geophilum (C. geophilum) is a widely distributed ectomycorrhizal fungus that plays a crucial role in forest ecosystems worldwide. However, the specific ecological factors influencing its global distribution and how climate change will affect its range are still relatively unknown. In this study, we used the MaxEnt model optimized with the kuenm package to simulate changes in the distribution pattern of C. geophilum from the Last Glacial Maximum to the future based on 164 global distribution records and 17 environmental variables and investigated the key environmental factors influencing its distribution. We employed the optimal parameter combination of RM = 4 and FC = QPH, resulting in a highly accurate predictive model. Our study clearly shows that the mean temperature of the coldest quarter and annual precipitation are the key environmental factors influencing the suitable habitats of C. geophilum. Currently, appropriate habitats of C. geophilum are mainly distributed in eastern Asia, west-central Europe, the western seaboard and eastern regions of North America, and southeastern Australia, covering a total area of approximately 36,578,300 km2 globally. During the Last Glacial Maximum and the mid-Holocene, C. geophilum had a much smaller distribution area, being mainly concentrated in the Qinling-Huaihe Line region of China and eastern Peninsular Malaysia. As global warming continues, the future suitable habitat for C. geophilum is projected to shift northward, leading to an expected expansion of the suitable area from 9.21% to 21.02%. This study provides a theoretical foundation for global conservation efforts and biogeographic understanding of C. geophilum, offering new insights into its distribution patterns and evolutionary trends.
Collapse
Affiliation(s)
- Yexu Zheng
- College of ForestryShandong Agricultural UniversityTai'anChina
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Yuan
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| | - Qifang Geng
- College of ForestryShandong Agricultural UniversityTai'anChina
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| |
Collapse
|
10
|
Dong K, Zhou J, Zhang F, Dong L, Chu B, Hua R, Hua L. Seismic Signaling for Detection of Empty Tunnels in the Plateau Zokor, Eospalax baileyi. Animals (Basel) 2023; 13:ani13020240. [PMID: 36670779 PMCID: PMC9854526 DOI: 10.3390/ani13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
There are considerable challenges involved in studying the behavior of subterranean rodents owing to the underground nature of their ecotope. Seismic communication plays a crucial role in the behavior of subterranean rodents, particularly solitary ones. The plateau zokor (Eospalax baileyi), a solitary subterranean rodent species endemic to the Qinghai−Tibet Plateau, will usually occupy empty neighboring tunnels in order to extend their territory. Little is known, however, about the process of territorial occupation or the function of animal communication when occupation is taking place. Based on previous studies of subterranean rodent communication, we hypothesized that plateau zokors use seismic signals to detect neighboring tunnels and then occupy them when it was found their neighbors were absent. To test this, we placed artificial tunnels close to active original zokor tunnels to simulate the availability of an empty neighboring tunnel, and then the seismic signals when a zokor chose to occupy the empty artificial tunnel were recorded. The results showed that the frequency of zokors occupying artificial empty tunnels within 48 h was 7/8, In all of these instances, the zokors generated seismic signals before and after occupation of the empty artificial tunnel. The number of seismic signals generated by the zokors increased significantly (p = 0.024) when they detected and occupied the artificial tunnels, compared to those generated in their original tunnels without the presence of an artificial tunnel alongside. Inside the original tunnels, the inter-pulse time interval of the seismic signals was significantly higher (p < 0.001), the peak frequency of these signals was significantly higher (p < 0.01), and the energy of the signals was significantly lower (p = 0.006), compared with those when an artificial tunnel was positioned next to the original. The results of this study suggest that plateau zokors first generate seismic signals to detect empty neighboring tunnels and that they are empty. In the absence of neighbor plateau zokors, they occupy the empty tunnels to extend their own territory.
Collapse
Affiliation(s)
- Kechi Dong
- College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China
| | - Jianwei Zhou
- Institute of Grassland Research of CAAS, Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010010, China
| | - Feiyu Zhang
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Longming Dong
- College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China
| | - Bin Chu
- College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China
| | - Rui Hua
- College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China
| | - Limin Hua
- College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Engineering and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
11
|
Nevo E, Li K. Sympatric Speciation in Mole Rats and Wild Barley and Their Genome Repeatome Evolution: A Commentary. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200009. [PMID: 36911292 PMCID: PMC9993473 DOI: 10.1002/ggn2.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/16/2022] [Indexed: 11/05/2022]
Abstract
The theories of sympatric speciation (SS) and coding and noncoding (cd and ncd =repeatome) genome function are still contentious. Studies on SS in our two new models, "Evolution Canyon" and "Evolution Plateau", in Israel, divergent microclimatically and geologically-edaphically, respectively, indicated that in ecologically divergent microsites SS is a common speciation model across life from bacteria to mammals. Genomically, the intergenic ncd repeatome was and is still regarded by many biologists as "selfish," "junk," and non-functional. In contrast, it is considered by the encyclopedia of DNA elements discovery as biochemically functional and regulatory, and the transposable elements were considered earlier by Barbara McClintock as "controlling elements" of genes. Remarkably, it is found that repeated elements can statistically identify significantly, the five species of subterranean mole rats of Spalax ehrenbergi superspecies adapted to increasingly arid climatic trend southward in Israel. Moreover, it is first discovered in the SS studies in two distant taxa, subterranean mole rats and wild barley, and later also in spiny mice in Israel and subterranean zokors in China, that the noncoding repeatome is genomically mirroring the image of the protein-coding genome in divergent ecologies. It is shown that this mirroring image is statistically significant both within and between the ecologically divergent taxa supporting the hypothesis that much of the repeatome might be regulatory and selected as the protein-coding genome by the same ecological stresses.
Collapse
Affiliation(s)
- Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifa3498838Israel
| | - Kexin Li
- State Key Laboratory of Grassland Agro‐ecosystemCollege of EcologyLanzhou UniversityLanzhou730000China
| |
Collapse
|
12
|
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods. Animals (Basel) 2022; 12:ani12182447. [PMID: 36139307 PMCID: PMC9494992 DOI: 10.3390/ani12182447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
The morphological and histological traits of the gastrointestinal tract (GIT) enable the animal to perform some specific functions that enhance the species’ adaptability to environments. The plateau zokor (Eospalax baileyi) is a subterranean rodent that mainly forages on plant roots in the Qinghai-Tibet Plateau, but little is known about the mechanism by which the plateau zokor digests roots that have high fiber contents. In this study, we used comparative anatomy methods to compare the morphological and histological traits of the GIT of both the plateau zokor and the plateau pika (Ochotona curzoniae), a small, fossorial lagomorph that forages aboveground plant parts, in order to clarify the traits of the plateau zokor’s GIT and to understand its adaptations to high-fiber foods. The results showed that the foods which plateau zokors eat have a higher fiber content than those which the plateau pikas eat. The plateau zokor has a double-chambered and hemi-glandular stomach (the tubular glands are only in the gastric corpus II, and the gastric fundus is keratinized), whereas the plateau pika has a simple, wholly glandular stomach. The gross morphological indicators (organ index and relative length) of the GIT were significantly lower in the plateau zokor than they were in the plateau pika (p < 0.001). However, the thickness of the gastric corpus II mucosal layer and the gastric fundus muscle layer are significantly higher in the plateau zokor than they are in the plateau pika (p < 0.001), and the thickness of each layer of intestinal tissue is higher in the plateau zokor than it is in the plateau pika. Additionally, the small intestinal villi also are higher and wider in the plateau zokor than they are in the plateau pika. Our results suggest that instead of adapting to digest the high-fiber diet by expanding the size of the GIT, the plateau zokor has evolved a complex stomach and a well-developed gastrointestinal histological structure, and that these specialized GIT structures are consistent with an optimal energy-economy evolutionary adaptation strategy.
Collapse
|