1
|
Craven T, Nolan MD, Bailey J, Olatunji S, Bann SJ, Bowen K, Ostrovitsa N, Da Costa TM, Ballantine RD, Weichert D, Levine PM, Stewart LJ, Bhardwaj G, Geoghegan JA, Cochrane SA, Scanlan EM, Caffrey M, Baker D. Computational Design of Cyclic Peptide Inhibitors of a Bacterial Membrane Lipoprotein Peptidase. ACS Chem Biol 2024; 19:1125-1130. [PMID: 38712757 PMCID: PMC11106742 DOI: 10.1021/acschembio.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.
Collapse
Affiliation(s)
- Timothy
W. Craven
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Mark D. Nolan
- School
of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Jonathan Bailey
- School
of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
- Biological
Inorganic Chemistry Laboratory, The Francis
Crick Institute, London NW1 1AT, U.K.
| | - Samir Olatunji
- School
of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Samantha J. Bann
- School
of
Chemistry and Chemical Engineering, Queen’s
University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Katherine Bowen
- School
of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Nikita Ostrovitsa
- School
of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Thaina M. Da Costa
- Department
of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College
Dublin, Dublin D02 VF25, Ireland
| | - Ross D. Ballantine
- School
of
Chemistry and Chemical Engineering, Queen’s
University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Dietmar Weichert
- School
of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Paul M. Levine
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Lance J. Stewart
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Gaurav Bhardwaj
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Joan A. Geoghegan
- Department
of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College
Dublin, Dublin D02 VF25, Ireland
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Stephen A. Cochrane
- School
of
Chemistry and Chemical Engineering, Queen’s
University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K.
| | - Eoin M. Scanlan
- School
of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Martin Caffrey
- School
of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - David Baker
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Cain BN, Hergenrother PJ. Using permeation guidelines to design new antibiotics-A PASsagE into Pseudomonas aeruginosa. Clin Transl Med 2024; 14:e1600. [PMID: 38426413 PMCID: PMC10905542 DOI: 10.1002/ctm2.1600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Brett N. Cain
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Paul J. Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
3
|
Lehman KM, May KL, Marotta J, Grabowicz M. Genetic analysis reveals a robust and hierarchical recruitment of the LolA chaperone to the LolCDE lipoprotein transporter. mBio 2024; 15:e0303923. [PMID: 38193657 PMCID: PMC10865981 DOI: 10.1128/mbio.03039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.
Collapse
Affiliation(s)
- Kelly M. Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kerrie L. May
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julianna Marotta
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Geddes EJ, Gugger MK, Garcia A, Chavez MG, Lee MR, Perlmutter SJ, Bieniossek C, Guasch L, Hergenrother PJ. Porin-independent accumulation in Pseudomonas enables antibiotic discovery. Nature 2023; 624:145-153. [PMID: 37993720 PMCID: PMC11254092 DOI: 10.1038/s41586-023-06760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Gram-negative antibiotic development has been hindered by a poor understanding of the types of compounds that can accumulate within these bacteria1,2. The presence of efflux pumps and substrate-specific outer-membrane porins in Pseudomonas aeruginosa renders this pathogen particularly challenging3. As a result, there are few antibiotic options for P. aeruginosa infections4 and its many porins have made the prospect of discovering general accumulation guidelines seem unlikely5. Here we assess the whole-cell accumulation of 345 diverse compounds in P. aeruginosa and Escherichia coli. Although certain positively charged compounds permeate both bacterial species, P. aeruginosa is more restrictive compared to E. coli. Computational analysis identified distinct physicochemical properties of small molecules that specifically correlate with P. aeruginosa accumulation, such as formal charge, positive polar surface area and hydrogen bond donor surface area. Mode of uptake studies revealed that most small molecules permeate P. aeruginosa using a porin-independent pathway, thus enabling discovery of general P. aeruginosa accumulation trends with important implications for future antibiotic development. Retrospective antibiotic examples confirmed these trends and these discoveries were then applied to expand the spectrum of activity of a gram-positive-only antibiotic, fusidic acid, into a version that demonstrates a dramatic improvement in antibacterial activity against P. aeruginosa. We anticipate that these discoveries will facilitate the design and development of high-permeating antipseudomonals.
Collapse
Affiliation(s)
- Emily J Geddes
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Morgan K Gugger
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Alfredo Garcia
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Martin Garcia Chavez
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Myung Ryul Lee
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Sarah J Perlmutter
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paul J Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
5
|
Lehman KM, May KL, Marotta J, Grabowicz M. Genetic analysis reveals a robust and hierarchical recruitment of the LolA chaperone to the LolCDE lipoprotein transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566237. [PMID: 37986794 PMCID: PMC10659402 DOI: 10.1101/2023.11.08.566237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.
Collapse
Affiliation(s)
- Kelly M. Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Kelly M. Lehman and Kerrie L. May contributed equally to this work. Author order was determined alphabetically
| | - Kerrie L. May
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Kelly M. Lehman and Kerrie L. May contributed equally to this work. Author order was determined alphabetically
| | - Julianna Marotta
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Smithers L, Degtjarik O, Weichert D, Huang CY, Boland C, Bowen K, Oluwole A, Lutomski C, Robinson CV, Scanlan EM, Wang M, Olieric V, Shalev-Benami M, Caffrey M. Structure snapshots reveal the mechanism of a bacterial membrane lipoprotein N-acyltransferase. SCIENCE ADVANCES 2023; 9:eadf5799. [PMID: 37390210 PMCID: PMC10313180 DOI: 10.1126/sciadv.adf5799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Bacterial lipoproteins (BLPs) decorate the surface of membranes in the cell envelope. They function in membrane assembly and stability, as enzymes, and in transport. The final enzyme in the BLP synthesis pathway is the apolipoprotein N-acyltransferase, Lnt, which is proposed to act by a ping-pong mechanism. Here, we use x-ray crystallography and cryo-electron microscopy to chart the structural changes undergone during the progress of the enzyme through the reaction. We identify a single active site that has evolved to bind, individually and sequentially, substrates that satisfy structural and chemical criteria to position reactive parts next to the catalytic triad for reaction. This study validates the ping-pong mechanism, explains the molecular bases for Lnt's substrate promiscuity, and should facilitate the design of antibiotics with minimal off-target effects.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Oksana Degtjarik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dietmar Weichert
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Coilín Boland
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Abraham Oluwole
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Corinne Lutomski
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|