1
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
2
|
Saini H, Basu P, Nesari T, Huddar VG, Ray K, Srivastava A, Gupta S, Mehrotra R, Tripathi R. Therapeutic and pharmacological efficacy of plant-derived bioactive compounds in targeting breast cancer. Am J Transl Res 2024; 16:1499-1520. [PMID: 38883353 PMCID: PMC11170612 DOI: 10.62347/nuzn4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/23/2024] [Indexed: 06/18/2024]
Abstract
Breast cancer (BC) ranks number one among cancers affecting women globally. Serious concerns include delayed diagnosis, poor prognosis, and adverse side effects of conventional treatment, leading to residual morbidity. Therefore, an alternative treatment approach that is safe and effective has become the need of the hour. In this regard, plant-based medicines via a combination of conventional drugs are gaining increasing acceptance worldwide, playing a pivotal role in cancer management as proven by their efficacy evaluation studies. This review aims to fill the knowledge gaps by providing the preclinical evidence of cellular and molecular mechanisms of Indian phytomedicines in targeting varied pathways of breast cancer progression. A comprehensive search was performed on different platforms, followed by screening of relevant studies for review. In this article, the in-depth of various botanical drugs covering their nomenclature, dosage, toxicity, and modus operandi in BC cells have been extensively discussed. Various signaling pathways like Notch signaling, MAPK signaling, apoptosis, Wnt signaling, etc. regulated by herbal medicine treatment in BC are also highlighted to understand the drug mechanism better. This will guide the researchers to plan future strategies and generate more robust integrated evidence of plant-based drugs or botanical formulations for their potential role in the management of BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Partha Basu
- Section of Early Detection and Prevention, International Agency for Research on CancerLyon-69008, France
| | - Tanuja Nesari
- Department of Dravyaguna (Materia Medica and Pharmacology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Vitthal Govindappa Huddar
- Department of Kayachikitsa (Internal Medicine), All India Institute of AyurvedaNew Delhi-110076, India
| | - Koninika Ray
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Anil Srivastava
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi-110029, India
| | - Ravi Mehrotra
- Rollins School of Public Health, Emory UniversityAtlanta, Georgia-30322, US
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| |
Collapse
|
3
|
Ahn SY, Jo CH. Implications of Axis Inhibition Protein 2 in Breast Cancer Progression. In Vivo 2023; 37:634-643. [PMID: 36881079 PMCID: PMC10026660 DOI: 10.21873/invivo.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Although axis inhibition protein 2 (Axin2) has been reported to act as a tumour suppressor, recent findings suggest that it exhibits oncogenic effects by mediating Snail1-induced epithelial-mesenchymal transition (EMT) in breast cancer cells. EMT is a crucial biological process involved in the initiation of metastasis in cancer progression. This study elucidated the biological significance and mechanism of Axin2 in breast cancer using transcriptomic and molecular techniques. MATERIALS AND METHODS The expression of Axin2 and Snail1 in MDA-MB-231 breast cancer cells was determined by western blotting analysis, and the role of Axin2 in breast cancer tumorigenesis was investigated in xenograft mouse models constructed using pLKO-Tet-shAxin2-transfected triple negative (TN) breast cancer cells. Additionally, the expression levels of EMT markers were determined using qRT-PCR, and clinical data were analysed using Kaplan-Meier (KM) plotter and The Cancer Genome Atlas (TCGA). RESULTS Axin2 knockdown significantly decreased (p<0.001) the proliferation of MDA-MB-231 cells in vitro and attenuated (p<0.05) the tumorigenic potential of the cells in vivo. Moreover, Axin2 knockdown significantly increased the relative mRNA levels of epithelial markers but decreased the expression of mesenchymal markers in MDA-MB-231 cells. CONCLUSION Axin2 may be involved in the progression of breast cancer, particularly triple-negative breast cancer, through the regulation of Snail1-induced EMT, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Orthopaedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea;
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center at Seoul National University, Seoul, Republic of Korea
| | - Chris Hyunchul Jo
- Department of Orthopaedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea;
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center at Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zekri ARN, Bahnassy A, Mourad M, Malash I, Ahmed O, Abdellateif MS. Genetic profiling of different phenotypic subsets of breast cancer stem cells (BCSCs) in breast cancer patients. Cancer Cell Int 2022; 22:423. [PMID: 36585652 PMCID: PMC9805169 DOI: 10.1186/s12935-022-02841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) have a crucial role in breast carcinogenesis, development, and progression. The aim of the current study is to characterize the BCSCs through the genetic profiling of different BCSCs phenotypic subsets to determine their related genetic pathways. METHODS Fresh tumor tissue samples were obtained from 31 breast cancer (BC) patients for (1) Mammosphere culture. (2) Magnetic separation of the BCSCs subsets using CD24, CD44, and CD326 Microbeads. (3) Flow cytometry (FCM) assay using CD44, CD24, and EpCAM. (4) RT-PCR profiler Arrays using stem cell (SC) panel of 84 genes for four group of cells (1) CD44+/CD24-/EpCAM- BCSCs, (2) CD44+/CD24- /EpCAM+ BCSCs, (3) mammospheres, and (4) normal breast tissues. RESULTS The BCSCs (CD44+/CD24-/EpCAM-) showed significant downregulation in 13 genes and upregulation in 15, where the CD44, GJB1 and GDF3 showed the maximal expression (P = 0.001, P = 0.003 and P = 0.007); respectively). The CD44+/CD24-/EpCAM+ BCSCs showed significant upregulation in 28 genes, where the CD44, GDF3, and GJB1 showed maximal expression (P < 0.001, P = 0.001 and P = 0.003; respectively). The mammospheres showed significant downregulation in 9 genes and a significant upregulation in 35 genes. The maximal overexpression was observed in GJB1 and FGF2 (P = 0.001, P = 0.001; respectively). The genes which achieved significant overexpression in all SC subsets were CD44, COL9A1, FGF1, FGF2, GDF3, GJA1, GJB1, GJB2, HSPA9, and KRT15. While significant downregulation in BMP2, BMP3, EP300, and KAT8. The genes which were differentially expressed by the mammospheres compared to the other BCSC subsets were CCND2, FGF3, CD4, WNT1, KAT2A, NUMB, ACAN, COL2A1, TUBB3, ASCL2, FOXA2, ISL1, DTX1, and DVL1. CONCLUSION BCSCs have specific molecular profiles that differ according to their phenotypes which could affect patients' prognosis and outcome.
Collapse
Affiliation(s)
- Abdel-Rahman N. Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abeer Bahnassy
- grid.7776.10000 0004 0639 9286Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magda Mourad
- grid.7776.10000 0004 0639 9286Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ibrahim Malash
- grid.7776.10000 0004 0639 9286Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S. Abdellateif
- grid.7776.10000 0004 0639 9286Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
7
|
Bulatowicz JJ, Wood TL. Activation Versus Inhibition of IGF1R: A Dual Role in Breast Tumorigenesis. Front Endocrinol (Lausanne) 2022; 13:911079. [PMID: 35784559 PMCID: PMC9247239 DOI: 10.3389/fendo.2022.911079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, the body of literature surrounding the insulin-like growth factor type 1 receptor (IGF1R) has described a largely pro-tumorigenic role in breast cancer cells and in several transgenic or xenograft mouse models of breast cancer. Interestingly, however, more recent evidence has emerged that suggests an additional, previously undescribed, tumor and metastasis suppressive function for IGF1R in both human breast tumors and mammary oncogenesis in mice. These seemingly conflicting reports can be reconciled when considering what is currently known about IGF1R function in the context of tissue development and cancer as it relates to cellular growth, proliferation, and differentiation. In this mini review, we will summarize the currently existing data with a particular focus on mouse models that have been developed to study IGF1R function in mammary development, tumorigenesis, and metastasis in vivo and propose hypotheses for how both the tumor-promoting and tumor-suppressing schools of thought regarding IGF1R in these histological contexts are compatible.
Collapse
Affiliation(s)
| | - Teresa L. Wood
- Department of Pharmacology, Physiology, & Neuroscience, Center for Cell Signaling and Cancer Institute of New Jersey, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| |
Collapse
|
8
|
Werner RL, Nekritz EA, Yan KK, Ju B, Shaner B, Easton J, Yu PJ, Silva J. Single-cell analysis reveals Comma-1D as a unique cell model for mammary gland development and breast cancer. J Cell Sci 2022; 135:275228. [PMID: 35502723 DOI: 10.1242/jcs.259329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The mammary epithelial tree contains two distinct populations, luminal and basal. The investigation of how this heterogeneity is developed and how it influences tumorigenesis has been hampered by the need to perform these studies using animal models. Comma-1D is an immortalized mouse mammary epithelial cell line that has unique morphogenetic properties. By performing single-cell RNA-seq studies we found that Comma-1D cultures consist of two main populations with luminal and basal features and a smaller population with mixed lineage and bipotent characteristics. We demonstrated that multiple transcription factors associated with the differentiation of the mammary epithelium in vivo also modulate this process in Comma-1D cultures. Additionally, we found that only cells with luminal features were able to acquire transformed characteristics after an oncogenic HER2 mutant was introduced in their genomes. Overall, our studies characterize at a single-cell level the heterogeneity of the Comma-1D cell line and illustrate how Comma-1D cells can be used as an experimental model to study both the differentiation and the transformation processes in vitro.
Collapse
Affiliation(s)
- Rachel L Werner
- Graduate School, Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Erin A Nekritz
- Graduate School, Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bridget Shaner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jose Silva
- Graduate School, Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
9
|
High-throughput profiling of histone post-translational modifications and chromatin modifying proteins by reverse phase protein array. J Proteomics 2022; 262:104596. [PMID: 35489683 PMCID: PMC10165948 DOI: 10.1016/j.jprot.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
Epigenetic variation plays a significant role in normal development and human diseases including cancer, in part through post-translational modifications (PTMs) of histones. Identification and profiling of changes in histone PTMs, and in proteins regulating PTMs, are crucial to understanding diseases, and for discovery of epigenetic therapeutic agents. In this study, we have adapted and validated an antibody-based reverse phase protein array (RPPA) platform for profiling 20 histone PTMs and expression of 40 proteins that modify histones and other epigenomic regulators. The specificity of the RPPA assay for histone PTMs was validated with synthetic peptides corresponding to histone PTMs and by detection of histone PTM changes in response to inhibitors of histone modifier proteins in cell cultures. The useful application of the RPPA platform was demonstrated with two models: induction of pluripotent stem cells and a mouse mammary tumor progression model. Described here is a robust platform that includes a rapid microscale method for histone isolation and partially automated workflows for analysis of histone PTMs and histone modifiers that can be performed in a high-throughput manner with hundreds of samples. This RPPA platform has potential for translational applications through the discovery and validation of epigenetic states as therapeutic targets and biomarkers. SIGNIFICANCE: Our study has established an antibody-based reverse phase protein array platform for global profiling of a wide range of post-translational modifications of histones and histone modifier proteins. The high-throughput platform provides comprehensive analyses of epigenetics for biological research and disease studies and may serve as screening assay for diagnostic purpose or therapy development.
Collapse
|
10
|
Lloyd-Lewis B, Gobbo F, Perkins M, Jacquemin G, Huyghe M, Faraldo MM, Fre S. In vivo imaging of mammary epithelial cell dynamics in response to lineage-biased Wnt/β-catenin activation. Cell Rep 2022; 38:110461. [PMID: 35263603 PMCID: PMC7615182 DOI: 10.1016/j.celrep.2022.110461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Real-time in vivo imaging provides an essential window into the spatiotemporal cellular events contributing to tissue development and pathology. By coupling longitudinal intravital imaging with genetic lineage tracing, here we capture the earliest cellular events arising in response to active Wnt/β-catenin signaling and the ensuing impact on the organization and differentiation of the mammary epithelium. This enables us to interrogate how Wnt/β-catenin regulates the dynamics of distinct subpopulations of mammary epithelial cells in vivo and in real time. We show that β-catenin stabilization, when targeted to either the mammary luminal or basal epithelial lineage, leads to cellular rearrangements that precipitate the formation of hyperplastic lesions that undergo squamous transdifferentiation. These results enhance our understanding of the earliest stages of hyperplastic lesion formation in vivo and reveal that, in mammary neoplastic development, β-catenin activation dictates a hair follicle/epidermal differentiation program independently of the targeted cell of origin.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France; School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Francesca Gobbo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Guillaume Jacquemin
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Marisa M Faraldo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris, France.
| |
Collapse
|
11
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Nekritz EA, Rodriguez‐Barrueco R, Yan K, Davis ML, Werner RL, Devis‐Jauregui L, Mukhopadhyay P, Yu J, Llobet‐Navas D, Silva J. miR-424/503 modulates Wnt/β-catenin signaling in the mammary epithelium by targeting LRP6. EMBO Rep 2021; 22:e53201. [PMID: 34633138 PMCID: PMC8647148 DOI: 10.15252/embr.202153201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022] Open
Abstract
During the female lifetime, the expansion of the epithelium dictated by the ovarian cycles is supported by a transient increase in the mammary epithelial stem cell population (MaSCs). Notably, activation of Wnt/β-catenin signaling is an important trigger for MaSC expansion. Here, we report that the miR-424/503 cluster is a modulator of canonical Wnt signaling in the mammary epithelium. We show that mammary tumors of miR-424(322)/503-depleted mice exhibit activated Wnt/β-catenin signaling. Importantly, we show a strong association between miR-424/503 deletion and breast cancers with high levels of Wnt/β-catenin signaling. Moreover, miR-424/503 cluster is required for Wnt-mediated MaSC expansion induced by the ovarian cycles. Lastly, we show that miR-424/503 exerts its function by targeting two binding sites at the 3'UTR of the LRP6 co-receptor and reducing its expression. These results unveil an unknown link between the miR-424/503, regulation of Wnt signaling, MaSC fate, and tumorigenesis.
Collapse
Affiliation(s)
- Erin A Nekritz
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| | - Ruth Rodriguez‐Barrueco
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Anatomy UnitDepartment of Pathology and Experimental TherapySchool of MedicineUniversity of Barcelona (UB)L’Hospitalet de LlobregatBarcelonaSpain
| | - Koon‐Kiu Yan
- Department of Computational BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Meredith L Davis
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Department of PathologyDuke University School of MedicineDurhamNCUSA
| | - Rachel L Werner
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| | - Laura Devis‐Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
| | - Partha Mukhopadhyay
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| | - Jiyang Yu
- Department of Computational BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - David Llobet‐Navas
- Molecular Mechanisms and Experimental Therapy in Oncology‐Oncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Jose Silva
- Graduate SchoolDepartment of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkNYUSA
| |
Collapse
|
13
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
14
|
Schachter NF, Adams JR, Skowron P, Kozma KJ, Lee CA, Raghuram N, Yang J, Loch AJ, Wang W, Kucharczuk A, Wright KL, Quintana RM, An Y, Dotzko D, Gorman JL, Wojtal D, Shah JS, Leon-Gomez P, Pellecchia G, Dupuy AJ, Perou CM, Ben-Porath I, Karni R, Zacksenhaus E, Woodgett JR, Done SJ, Garzia L, Sorana Morrissy A, Reimand J, Taylor MD, Egan SE. Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nat Commun 2021; 12:5238. [PMID: 34475389 PMCID: PMC8413298 DOI: 10.1038/s41467-021-25467-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
The most common events in breast cancer (BC) involve chromosome arm losses and gains. Here we describe identification of 1089 gene-centric common insertion sites (gCIS) from transposon-based screens in 8 mouse models of BC. Some gCIS are driver-specific, others driver non-specific, and still others associated with tumor histology. Processes affected by driver-specific and histology-specific mutations include well-known cancer pathways. Driver non-specific gCIS target the Mediator complex, Ca++ signaling, Cyclin D turnover, RNA-metabolism among other processes. Most gCIS show single allele disruption and many map to genomic regions showing high-frequency hemizygous loss in human BC. Two gCIS, Nf1 and Trps1, show synthetic haploinsufficient tumor suppressor activity. Many gCIS act on the same pathway responsible for tumor initiation, thereby selecting and sculpting just enough and just right signaling. These data highlight ~1000 genes with predicted conditional haploinsufficient tumor suppressor function and the potential to promote chromosome arm loss in BC.
Collapse
Affiliation(s)
- Nathan F Schachter
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Joanna Yang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aaron Kucharczuk
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katherine L Wright
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rita M Quintana
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Natera, San Francisco, CA, USA
| | - Yeji An
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Dotzko
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer L Gorman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Daria Wojtal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Juhi S Shah
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Leon-Gomez
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giovanna Pellecchia
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam J Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jim R Woodgett
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- The Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Livia Garzia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cancer Research Program, McGill University, Montreal, QC, Canada
| | - A Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary and Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Jüri Reimand
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Saeki K, Chang G, Kanaya N, Wu X, Wang J, Bernal L, Ha D, Neuhausen SL, Chen S. Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Commun Biol 2021; 4:660. [PMID: 34079055 PMCID: PMC8172904 DOI: 10.1038/s42003-021-02201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.
Collapse
Affiliation(s)
- Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Desiree Ha
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
16
|
Peng F, Yang C, Kong Y, Huang X, Chen Y, Zhou Y, Xie X, Liu P. CDK12 Promotes Breast Cancer Progression and Maintains Stemness by Activating c-myc/β -catenin Signaling. Curr Cancer Drug Targets 2021; 20:156-165. [PMID: 31744448 DOI: 10.2174/1568009619666191118113220] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND CDK12 is a promising therapeutic target in breast cancer with an effective ability of maintaining cancer cell stemness. OBJECTIVE We aim to investigate the mechanism of CDK12 in maintaining breast cancer stemness. METHODS CDK12 expression level was accessed by using RT-qPCR and IHC. CDK12-altered breast cancer cell lines MDA-MB-231-shCDK12 and SkBr-3-CDK12 were then established. CCK8, colony formation assays, and xenograft model were used to value the effect of CDK12 on tumorigenicity. Transwell assay, mammosphere formation, FACS, and lung metastasis model in vivo were determined. Western blot further characterized the mechanism of CDK12 in breast cancer stemness through the c-myc/β-catenin pathway. RESULTS Our results showed a higher level of CDK12 exhibited in breast cancer samples. Tumor formation, cancer cell mobility, spheroid forming, and the epithelial-mesenchymal transition will be enhanced in the CDK12high group. In addition, CDK12 was associated with lung metastasis and maintained breast cancer cell stemness. CDK12high cancer cells presented higher tumorigenicity and a population of CD44+ subset compared with CDK12low cells. Our study demonstrated c-myc positively expressed with CDK12. The c-myc/β-catenin signaling was activated by CDK12, which is a potential mechanism to initiate breast cancer stem cell renewal and may serve as a potential biomarker of breast cancer prognosis. CONCLUSION CDK12 overexpression promotes breast cancer tumorigenesis and maintains the stemness of breast cancer by activating c-myc/β-catenin signaling. Inhibiting CDK12 expression may become a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Yanan Kong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaojia Huang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yanyu Chen
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yangfan Zhou
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Hsu CC, Liao WY, Chang KY, Chan TS, Huang PJ, Chiang CT, Shan YS, Cheng LH, Liao TY, Tsai KK. A multi-mode Wnt- and stemness-regulatory module dictated by FOXM1 and ASPM isoform I in gastric cancer. Gastric Cancer 2021; 24:624-639. [PMID: 33515163 DOI: 10.1007/s10120-020-01154-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer mortality globally and a molecularly heterogeneous disease. Identifying the driver pathways in GC progression is crucial to improving the clinical outcome. Recent studies identified ASPM (abnormal spindle-like microcephaly-associated) and FOXM1 (Forkhead box protein M1) as novel Wnt and cancer stem cell (CSC) regulators; their pathogenetic roles and potential crosstalks in GC remain unclarified. METHODS The expression patterns of ASPM isoforms and FOXM1 were profiled in normal gastric epithelial and GC tissues. The functional roles of ASPM and FOXM1 in Wnt activity, cancer stemness and GC progression, and the underlying signaling processes were investigated. RESULTS Approximately one third of GC cells upregulate the expression of ASPM isoform I (ASPMiI) in their cytoplasm; the tumors with a high ASPMiI positive score (≥ 10%) are associated with a poor prognosis of the patients. Mechanistically, the molecular interplay among FOXM1, ASPMiI and DVL3 was found to converge on β-catenin to control the Wnt activity and the stemness property of GC cells. This multi-mode Wnt-regulatory module serves to reinforce Wnt signals in CSCs by transcriptional regulation (FOXM1-ASPM), protein-protein interactions (ASPMiI-DVL3-β-catenin), and nuclear translocation (FOXM1-β-catenin). CONCLUSIONS This study illuminates a novel Wnt- and stemness-regulatory mechanism in GC cells and identifies a novel subset of FOXM1highASPMiIhigh GC with potential to guide Wnt- and stemness-related diagnostics and therapies.
Collapse
Affiliation(s)
- Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 824410, Taiwan
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes (NHRIs), Tainan City, 704016, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
- Division of Gastroenterology, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Po-Jui Huang
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
- Division of Gastroenterology, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Chun-Ting Chiang
- Department of Pathology, National Cheng-Kung University Hospital, Tainan City, 704302, Taiwan
| | - Yan-Shen Shan
- Department of Surgery, National Cheng-Kung University Hospital, Tainan City, 704302, Taiwan
| | - Lin-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
| | - Tai-Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes (NHRIs), Tainan City, 704016, Taiwan.
- Division of Gastroenterology, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan.
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU and Affiliated Hospitals Pancreatic Cancer Group, Taipei Medical University, Taipei City, 110301, Taiwan.
| |
Collapse
|
18
|
Abstract
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. A tremendous effort has been made to understand the origin of cancer cells, the formation of cancerous tissues, and the mechanism by which they spread and relapse, but the disease still remains mysterious. Here, we made an attempt to scrutinize evidences that indicate the role of stem cells in tumorigenesis and metastasis, and cancer relapse. We also looked into the influence of cancers on stem cells, which in turn represent a major constituent of tumor microenvironment. Based on current understandings of the properties of (cancer) stem cells and their relation to cancers, we can foresee that novel therapeutic approaches would become the next wave of cancer treatment.
Collapse
Affiliation(s)
- Wen Yin
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China
| | - Jialing Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China
| | - Linling Jiang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Sichuan 610041, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Abstract
Wnt signaling is an important morphogenetic signaling pathway best known for its essential role in determining embryonic cell fates; it is often activated to re-specify fetal cells or to maintain the lineage flexibility of somatic stem cells. In this review, we consider the role of this pathway in the remarkable process of differentiation, growth and morphogenesis of the mammary gland during embryogenesis, ductal outgrowth and pregnancy. Specifically, mammary stem cells are compared with stem cells from other tissues, to identify commonalities and differences. Wnt signaling is known to be required to maintain the bipotent basal stem cell present in adult mammary ductal trees, however, the absence of this stem cell has little effect on growth or morphogenesis, and Wnt signaling is not induced during the ductal/alveolar expansion during pregnancy. The evidence for pre-determined hierarchies of mammary epithelial cells is reviewed, together with the role of signaling between mixtures of specified mammary epithelial cells in the maintenance of Wnt-dependent clonagenic stem cells. The dazzling variety of Wnt signaling components expressed by mammary epithelial cells is presented, along with some potential stromal sources of Wnt proteins that may be important starting points for the induction of plasticity in the epithelium.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
20
|
Qi Y, Guo L, Liu Y, Zhao T, Liu X, Zhang Y. Sevoflurane Limits Glioma Progression by Regulating Cell Proliferation, Apoptosis, Migration, and Invasion via miR-218-5p/DEK/β-Catenin Axis in Glioma. Cancer Manag Res 2021; 13:2057-2069. [PMID: 33664593 PMCID: PMC7924128 DOI: 10.2147/cmar.s265356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Sevoflurane (SEV) is a frequently used volatile anesthetic in cancer surgery. Sevoflurane treatment has been shown to suppress the migration and invasion of several human cancer cells. However, the effect of sevoflurane on glioma remains largely unclear. Methods Glioma cell lines (U251 and U343) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry assay, and transwell assay were performed to detect the cell viability, apoptosis, migration and invasion. Western blot assay was employed to detect the protein levels of β-catenin, c-Myc, CyclinD1, β-catenin, N-cadherin, vimentin, and DEK. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of miR-218-5p. The target interaction between miR-218-5p and DEK was predicted through bioinformatics analysis and verified by dual-luciferase reporter assay system. Results We found that sevoflurane aberrantly inhibited the abilities on viability, migration, invasion, EMT and β-catenin signaling and promoted cell apoptosis in U251 and U343 cells in a dose-dependent manner. MiR-218-5p strikingly suppressed the abilities of proliferation, migration, invasion rather than apoptosis and activation of β-catenin signaling. Sevoflurane could facilitate the miR-218-5p expression, and its suppressing effects on glioma cells were reversed by pre-treatment with miR-218-5p inhibitors or pcDNA3.1/DEK in vitro and in vivo. Silencing of miR-218-5p reverted sh-DEK and sevoflurane-induced repression on proliferation, migration, invasion, and β-catenin signaling, and promotion on apoptosis in the glioma cells. Conclusion Our data showed that sevoflurane inhibited the proliferation, migration, invasion, and enhanced the apoptosis in glioma cells through regulating miR-218-5p/DEK/β-catenin axis.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Lina Guo
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yanchao Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Tonghang Zhao
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Xianwen Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Yang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| |
Collapse
|
21
|
Zhou Y, Li X, Ye M. Morusin inhibits the growth of human colorectal cancer HCT116‑derived sphere‑forming cells via the inactivation of Akt pathway. Int J Mol Med 2021; 47:1. [PMID: 33576447 PMCID: PMC7891835 DOI: 10.3892/ijmm.2021.4884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
The existence of colorectal cancer stem-like cells (CSC) is responsible for the failure of current treatments against colorectal cancer. Therefore, novel therapies need be developed to target CSCs. Some natural agents, including morusin have been proposed as possible candidates for this purpose. Morusin has been shown to exert antitumor effects. In the present study, it is demonstrated that morusin exerts antitumor effects on colorectal CSCs (CCSCs). The viability of human CCSCs was enhanced when the CCSCs formed spheroids in a serum-free and non-adhesive floating culture system. HCT116 sphere cells exhibited an increased proliferative capacity and a higher expression of stemness markers [octamer-binding transcription factor 4 (Oct4), Sox2 and Nanog]. Morusin inhibited the development of cancer spheroids and suppressed the growth of sphere cells via the induction of cell cycle arrest. Similarly, morusin decreased the expression levels of the stemness markers, Nanog and Oct4. The data partially revealed the molecular mechanisms involved: β-catenin signaling maintains the growth of CSCs and directly modulates the expression of Nanog and Oct4. Morusin suppressed the activity of β-catenin signaling via the inactivation of Akt; the executive β-catenin/TCF4 complex and the downstream targets, c-Myc, survivin and cyclin D1, were also downregulated. Moreover, the morusin-induced inactivation of Akt also increased the expression of p21Cip1/WAF1 and p27Kip, which can block the cell cycle by interacting with cyclin-dependent kinase (CDK) complexes. On the whole, the present study demonstrates that morusin inhibited the growth of colorectal cancer sphere cells, which were enriched with CCSCs via the inactivation of the Akt pathway.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Hematology and Oncology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, Jiangsu 214000, P.R. China
| | - Xiangyong Li
- Department of Hematology and Oncology, 904 Hospital of PLA Joint Logistic Support Force, Wuxi, Jiangsu 214000, P.R. China
| | - Min Ye
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
22
|
Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12:E3765. [PMID: 33327542 PMCID: PMC7765014 DOI: 10.3390/cancers12123765] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| | | | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
23
|
Taurin S, Alkhalifa H. Breast cancers, mammary stem cells, and cancer stem cells, characteristics, and hypotheses. Neoplasia 2020; 22:663-678. [PMID: 33142233 PMCID: PMC7586061 DOI: 10.1016/j.neo.2020.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
The cellular heterogeneity of breast cancers still represents a major therapeutic challenge. The latest genomic studies have classified breast cancers in distinct clusters to inform the therapeutic approaches and predict clinical outcomes. The mammary epithelium is composed of luminal and basal cells, and this seemingly hierarchical organization is dependent on various stem cells and progenitors populating the mammary gland. Some cancer cells are conceptually similar to the stem cells as they can self-renew and generate bulk populations of nontumorigenic cells. Two models have been proposed to explain the cell of origin of breast cancer and involve either the reprogramming of differentiated mammary cells or the dysregulation of mammary stem cells or progenitors. Both hypotheses are not exclusive and imply the accumulation of independent mutational events. Cancer stem cells have been isolated from breast tumors and implicated in the development, metastasis, and recurrence of breast cancers. Recent advances in single-cell sequencing help deciphering the clonal evolution within each breast tumor. Still, few clinical trials have been focused on these specific cancer cell populations.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Haifa Alkhalifa
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Qattan A. Novel miRNA Targets and Therapies in the Triple-Negative Breast Cancer Microenvironment: An Emerging Hope for a Challenging Disease. Int J Mol Sci 2020; 21:ijms21238905. [PMID: 33255471 PMCID: PMC7727826 DOI: 10.3390/ijms21238905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of triple-negative breast cancer (TNBC) remains challenging because of the heterogeneity of the disease and lack of single targetable driving mutations. TNBC does not rely on estrogen, progesterone or epidermal growth factor receptors and is associated with aggressive disease progression and poor prognosis. TNBC is also characterized by resistance to chemotherapeutics, and response to immunotherapies is limited despite promising results in a subset of TNBC patients. MicroRNAs (miRNAs) have emerged as significant drivers of tumorigenesis and tumor progression in triple-negative breast cancer (TNBC) and present unique opportunities to target various components of the TNBC microenvironment for improved efficacy against this difficult to treat cancer. Effects of miRNAs on multiple targets may improve response rates in the context of this genetically and biologically heterogeneous disease. In this review, we offer a comprehensive view of miRNA regulation in TNBC, treatment challenges presented by TNBC in the context of the tumor microenvironment and stem cell subpopulations, and current and emerging miRNA-based therapeutic strategies targeting various components of the TNBC microenvironment. In addition, we offer insight into novel targets that have potential for treating TNBC through multiple mechanisms in the tumor microenvironment simultaneously and those that may be synergistic with standard chemotherapies.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research Unit, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; or
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, Washington, DC 20073, USA
| |
Collapse
|
25
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
26
|
Sun Y, Wang W, Zhao C. Frizzled Receptors in Tumors, Focusing on Signaling, Roles, Modulation Mechanisms, and Targeted Therapies. Oncol Res 2020; 28:661-674. [PMID: 32998794 PMCID: PMC7962935 DOI: 10.3727/096504020x16014648664459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt molecules play crucial roles in development and adult homeostasis through their receptors Frizzled proteins (Fzds). Fzds mediate canonical β-catenin pathway and various noncanonical β-catenin-independent pathways. Aberrant Fzd signaling is involved in many diseases including cancer. Wnt/β-catenin is a well-established oncogenic pathway involved in almost every aspect of tumor development. However, Fzd-mediated noncanonical Wnt pathways function as both tumor promoters and tumor suppressors depending on cellular context. Fzd-targeted therapies have proven to be effective on cultured tumor cells, tumor cell xenografts, mouse tumor models, and patient-derived xenografts (PDX). Moreover, Fzd-targeted therapies synergize with chemotherapy in preclinical models. However, the occurrence of fragility fractures in patients treated with Fzd-targeted agents such as OMP-54F28 and OMP-18R5 limits the development of this combination. Along with new insights on signaling, roles, and modulation mechanisms of Fzds in human tumors, more Fzd-related therapeutic targets will be developed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| |
Collapse
|
27
|
Venkatesh J, Rishi AK, Reddy KB. Novel strategies to target chemoresistant triple-negative breast cancer. Genes Cancer 2020; 11:95-105. [PMID: 33488948 PMCID: PMC7805540 DOI: 10.18632/genesandcancer.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Previous studies from our group and others have shown that current drug treatment(s) strategies eliminate bulk of tumor cells (non-CSCs) but it had a minimal effect on cancer stem cells (CSCs) leading to resistance and tumor recurrence. We studied the effects of CFM-4.16 (CARP-1 functional mimetic) and/or cisplatin on four Triple-negative breast cancer (TNBC) MDA-MB-468, MDA-MB-231, CRL-2335 and BR-1126, two cisplatin resistant CisR/MDA-231 and CisR/MDA-468 and cancer stem cells (CSCs) from resistant cell lines. TNBC cells treated with CFM-4.16 plus cisplatin inhibited the expression of FZD8, LRP6 and c-Myc and significantly enhanced cell death in all the cell lines by ~70%-80% compared with the control(s). When Cisplatin resistant CisR/MDA-231 and CisR/MDA-468 were treated with CFM-4.16 plus cisplatin, they also showed a reduction in FZD8 and LRP6 and increased apoptosis compared to control group. Similarly, CFM-4.16 plus cisplatin treatment reduced mammospheres formation abilities of CSCs by 80-90% compared to control group, increased PARP cleavage and apoptosis. Data shows CFM-4.16 plus cisplatin treatment significantly increased apoptosis/cell death in parental, cisplatin resistant and CSCs. Taken together the data suggests that FZD8-mediated Wnt-signaling plays a major role in mediating CSCs growth and resistance to chemotherapy and its inhibition enhances the chemotherapeutic response in TNBC.
Collapse
Affiliation(s)
- Jaganathan Venkatesh
- John D. Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Kaladhar B Reddy
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.,Department of Pathology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
28
|
Bridges AE, Ramachandran S, Pathania R, Parwal U, Lester A, Rajpurohit P, Morera DS, Patel N, Singh N, Korkaya H, Manicassamy S, Prasad PD, Lokeshwar VB, Lokeshwar BL, Ganapathy V, Thangaraju M. RAD51AP1 Deficiency Reduces Tumor Growth by Targeting Stem Cell Self-Renewal. Cancer Res 2020; 80:3855-3866. [PMID: 32665355 DOI: 10.1158/0008-5472.can-19-3713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
RAD51-associated protein 1 (RAD51AP1) plays an integral role in homologous recombination by activating RAD51 recombinase. Homologous recombination is essential for preserving genome integrity and RAD51AP1 is critical for D-loop formation, a key step in homologous recombination. Although RAD51AP1 is involved in maintaining genomic stability, recent studies have shown that RAD51AP1 expression is significantly upregulated in human cancers. However, the functional role of RAD51AP1 in tumor growth and the underlying molecular mechanism(s) by which RAD51AP1 regulates tumorigenesis have not been fully understood. Here, we use Rad51ap1-knockout mice in genetically engineered mouse models of breast cancer to unravel the role of RAD51AP1 in tumor growth and metastasis. RAD51AP1 gene transcript was increased in both luminal estrogen receptor-positive breast cancer and basal triple-negative breast cancer, which is associated with poor prognosis. Conversely, knockdown of RAD51AP1 (RADP51AP1 KD) in breast cancer cell lines reduced tumor growth. Rad51ap1-deficient mice were protected from oncogene-driven spontaneous mouse mammary tumor growth and associated lung metastasis. In vivo, limiting dilution studies provided evidence that Rad51ap1 plays a critical role in breast cancer stem cell (BCSC) self-renewal. RAD51AP1 KD improved chemotherapy and radiotherapy response by inhibiting BCSC self-renewal and associated pluripotency. Overall, our study provides genetic and biochemical evidences that RAD51AP1 is critical for tumor growth and metastasis by increasing BCSC self-renewal and may serve as a novel target for chemotherapy- and radiotherapy-resistant breast cancer. SIGNIFICANCE: This study provides in vivo evidence that RAD51AP1 plays a critical role in breast cancer growth and metastasis by regulating breast cancer stem cell self-renewal.
Collapse
Affiliation(s)
- Allison E Bridges
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Sabarish Ramachandran
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Rajneesh Pathania
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Utkarsh Parwal
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Adrienne Lester
- Depatment of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, Georgia
| | - Pragya Rajpurohit
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Daley S Morera
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, Georgia
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vinata B Lokeshwar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L Lokeshwar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia. .,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
29
|
Kong D, Hughes CJ, Ford HL. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 2020; 7:72. [PMID: 32391382 PMCID: PMC7194153 DOI: 10.3389/fmolb.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
With the exception of non-melanoma skin cancer, breast cancer is the most frequently diagnosed malignant disease among women, with the majority of mortality being attributable to metastatic disease. Thus, even with improved early screening and more targeted treatments which may enable better detection and control of early disease progression, metastatic disease remains a significant problem. While targeted therapies exist for breast cancer patients with particular subtypes of the disease (Her2+ and ER/PR+), even in these subtypes the therapies are often not efficacious once the patient's tumor metastasizes. Increases in stemness or epithelial-to-mesenchymal transition (EMT) in primary breast cancer cells lead to enhanced plasticity, enabling tumor progression, therapeutic resistance, and distant metastatic spread. Numerous signaling pathways, including MAPK, PI3K, STAT3, Wnt, Hedgehog, and Notch, amongst others, play a critical role in maintaining cell plasticity in breast cancer. Understanding the cellular and molecular mechanisms that regulate breast cancer cell plasticity is essential for understanding the biology of breast cancer progression and for developing novel and more effective therapeutic strategies for targeting metastatic disease. In this review we summarize relevant literature on mechanisms associated with breast cancer plasticity, tumor progression, and drug resistance.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
30
|
Saboya M, Jetzt AE, Datar K, Cohick WS. Fetal Alcohol Exposure Alters Mammary Epithelial Cell Subpopulations and Promotes Tumorigenesis. Alcohol Clin Exp Res 2020; 44:831-843. [PMID: 32056248 PMCID: PMC7166183 DOI: 10.1111/acer.14308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fetal alcohol exposure (FAE) increases the risk of mammary tumorigenesis in adult offspring; however, the underlying mechanism remains unknown. This study tested the hypothesis that FAE shifts the mammary epithelial cell (MEC) composition toward one that promotes tumorigenesis. METHODS Pregnant Friend Virus B NIH Jackson dams bred to MMTV-Wnt1 male mice were given ad libitum access to 5% alcohol in 0.2% saccharin solution from GD9-10 and 10% alcohol in 0.2% saccharin from GD11-GD19 or 0.2% saccharin solution from GD9-GD19. Thoracic and inguinal mammary glands from wild-type (WT) and transgenic (Tg) female offspring were harvested at 5 and 10 weeks of age and dissociated to yield a single cell suspension enriched for MECs for flow cytometry, mammosphere assay, and gene analysis. A subset of Tg offspring was followed for tumor formation. RESULTS WT glands of FAE animals exhibited a decreased basal cell population and increased luminal: basal ratio at 10 weeks of age. qRT-PCR analysis of total MECs found that Hey1 mRNA expression was increased in the WT FAE group at 10 weeks of age. In Tg glands, FAE increased the luminal progenitor cell population at 5 weeks of age but did not alter MEC composition at 10 weeks of age. Tertiary mammosphere-forming efficiency was greater in the WT glands of FAE animals at 10 weeks of age. Tumor latency was decreased in the FAE group. Flow cytometry analysis indicated that FAE females developed tumors with an increased basal cell population. CONCLUSIONS These data indicate that FAE can shift MEC subpopulations, increasing the proportion of cells that are potentially vulnerable to transformation and affecting cancer risk.
Collapse
Affiliation(s)
- Mariana Saboya
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Amanda E Jetzt
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Ketaki Datar
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Wendie S Cohick
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
31
|
Gao K, Zhang Y, Niu J, Nie Z, Liu Q, Lv C. Zinc promotes cell apoptosis via activating the Wnt-3a/β-catenin signaling pathway in osteosarcoma. J Orthop Surg Res 2020; 15:57. [PMID: 32075661 PMCID: PMC7029609 DOI: 10.1186/s13018-020-01585-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The zinc content in the blood and tumor tissues of patients with osteosarcoma and the underlying regulation and molecular mechanism of zinc have not been reported. METHODS AND RESULTS This study showed that the zinc content in the blood and tumor tissues of patients with osteosarcoma significantly reduced. CCK-8 and Transwell chamber assays revealed that zinc treatment significantly inhibited the proliferation and invasion abilities of osteosarcoma cells. Western blot analysis indicated that the expression levels of caspase-3 and caspase-9 were significantly increased, suggesting that zinc inhibited the growth and promoted the apoptosis of osteosarcoma cells. In addition, the expression levels of Wnt-3a and β-catenin, the marker proteins of the Wnt/β-catenin signaling pathways, were significantly increased in osteosarcoma cells after zinc intervention, which demonstrated that the pathway was clearly activated. However, the effect of zinc on the apoptosis, proliferation, and invasion abilities of osteosarcoma cells was reversed when the Wnt/β-catenin signaling pathways was inhibited by XAV939 (Wnt antagonist) treatment. CONCLUSIONS This study is the first to report the changes in zinc levels in the blood and tumor tissues of patients with osteosarcoma and to preliminarily verify that zinc inhibits the proliferation and invasion and promote the apoptosis of osteosarcoma cells by inducing the Wnt/β-catenin signaling pathway, which ultimately inhibit cancer growth.
Collapse
Affiliation(s)
- Kai Gao
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, China
| | - Yingchun Zhang
- Department of Interventional Radiology, Jining No.1 People's Hospital, Jining, China
| | - Jianbing Niu
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, China
| | - Zhikui Nie
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, China
| | - Qingsheng Liu
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, China.
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, China.
| |
Collapse
|
32
|
Cong M, Wang Y, Yang Y, Lian C, Zhuang X, Li X, Zhang P, Liu Y, Tang J, Yang Q, Zhang X, Xiong H, Hu R, Hu G. MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. NATURE CANCER 2020; 1:222-234. [PMID: 35122005 DOI: 10.1038/s43018-019-0021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Tumor-initiating cells (TICs) are considered the culprits of cancer development and progression. Dysregulation of metastasis suppressor protein 1 (MTSS1) has been widely observed in tumor metastasis, but its functional contribution and mechanism in cancer is poorly understood. Here we report a role of MTSS1 in suppressing TICs in breast cancer. Mtss1 knockout (KO) enhances the mammary epithelial TIC subpopulation in both luminal and basal-like breast cancer mouse models. MTSS1 also suppresses tumorsphere formation in breast cancer cells. Mechanistically, MTSS1 interacts with the E3 ligase RanBP2-type and C3HC4-type zinc finger containing 1 (RBCK1) to facilitate RBCK1-mediated p65 ubiquitination and degradation, thus suppressing the NF-κB signaling pathway and tumorigenesis. In addition, actin beta-like 2 (ACTBL2) competes with RBCK1 for MTSS1 binding, leading to p65 stabilization. Importantly, MTSS1 silencing promotes patient-derived organoid formation and xenograft growth. MTSS1 downregulation in clinical tumors is also linked to worse prognosis. Overall our data reveal a new paradigm of NF-κB regulation and may have important implications in therapeutics targeting TICs.
Collapse
Affiliation(s)
- Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Cheng Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueqian Zhuang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxun Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China; Department of Breast Oncology, Sun Yat-Sen University, Guangzhou, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China.
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
34
|
Mao X, Jin F. The Exosome And Breast Cancer Cell Plasticity. Onco Targets Ther 2019; 12:9817-9825. [PMID: 31819481 PMCID: PMC6874230 DOI: 10.2147/ott.s214133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cell plasticity is the ability of cancer cells to reversibly interchange between distinct cell status, which plays a key role in cancer progression. Cancer cell plasticity is now known to be shaped by the secreted nanoparticles termed exosomes which transport proteins and lipids as well as nucleic acids. These aspects have emerged as key determinants of tumor progression and targeting, with approaches such as immunotherapy showing promise in the clinic. While significant strides have been made in this research area, some very interesting questions still warrant more and deeper investigation. We provide a review of the interplay between exosomes and breast cancer cell plasticity, and the potential implication in metastases and drug-resistance.
Collapse
Affiliation(s)
- Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
35
|
Chen Z, Wu W, Huang Y, Xie L, Li Y, Chen H, Li W, Yin D, Hu K. RCC2 promotes breast cancer progression through regulation of Wnt signaling and inducing EMT. J Cancer 2019; 10:6837-6847. [PMID: 31839818 PMCID: PMC6909956 DOI: 10.7150/jca.36430] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023] Open
Abstract
Regulator of chromosome condensation 2 (RCC2), also known as TD-60, is an RCC1 family member and plays an essential role in mitosis. However, the roles of RCC2 in breast cancer are still unclear. In this study, RCC2 was found to exert oncogenic activities in breast cancer. Samples of breast cancer tissue revealed an increased level of RCC2 and a high level of RCC2 was associated with poor overall survival rate of breast cancer patients. Overexpression of RCC2 significantly enhanced cell proliferation and migration abilities of breast cancer cells in vitro and in vivo. Mechanistically, RCC2 induced epithelial-mesenchymal transition (EMT) through the activation of Wnt signaling pathway. Collectively, our study indicates that RCC2 contributes to breast cancer progression and functions as an important regulator of EMT through the activation of Wnt signaling.
Collapse
Affiliation(s)
- Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenjing Wu
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenjia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
36
|
Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11101569. [PMID: 31619007 PMCID: PMC6826533 DOI: 10.3390/cancers11101569] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Therapeutic strategies to prevent or treat metastatic disease are still inadequate although great progress has been made in treating early-stage breast cancer. Cancer stem-like cells (CSCs) that are endowed with high plasticity and self-renewal properties have been shown to play a key role in breast cancer development, progression, and metastasis. A subpopulation of CSCs that combines tumor-initiating capacity and a dormant/quiescent/slow cycling status is present throughout the clinical history of breast cancer patients. Dormant/quiescent/slow cycling CSCs are a key component of tumor heterogeneity and they are responsible for chemoresistance, tumor migration, and metastatic dormancy, defined as the ability of CSCs to survive in target organs and generate metastasis up to two decades after diagnosis. Understanding the strategies that are used by CSCs to resist conventional and targeted therapies, to interact with their niche, to escape immune surveillance, and finally to awaken from dormancy is of key importance to prevent and treat metastatic cancer. This review summarizes the current understanding of mechanisms involved in CSCs chemoresistance, dissemination, and metastasis in breast cancer, with a particular focus on dormant cells. Finally, we discuss how advancements in the detection, molecular understanding, and targeting of dormant CSCs will likely open new therapeutic avenues for breast cancer treatment.
Collapse
|
37
|
Tang H, Song C, Ye F, Gao G, Ou X, Zhang L, Xie X, Xie X. miR-200c suppresses stemness and increases cellular sensitivity to trastuzumab in HER2+ breast cancer. J Cell Mol Med 2019; 23:8114-8127. [PMID: 31599500 PMCID: PMC6850933 DOI: 10.1111/jcmm.14681] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24− phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24− phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.
Collapse
Affiliation(s)
- Hailin Tang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guanfeng Gao
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lijuan Zhang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinhua Xie
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
38
|
Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res 2019; 29:832-845. [PMID: 31481760 DOI: 10.1038/s41422-019-0225-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease. In particular, triple-negative breast cancer (TNBC) comprises various molecular subgroups with unclear identities and currently has few targeted treatment options. Our previous study identified protein C receptor (Procr) as a surface marker on mammary stem cells (MaSCs) located in the basal layer of the normal mammary gland. Given the possible connection of TNBC with basal layer stem cells, we conducted comparative analyses of Procr in breast cancers of mouse and human origin. In mouse mammary tumors, we showed that Procr+ cells are enriched for cancer stem cells (CSCs) in Wnt1 basal-like tumors, but not in Brca1 basal-like tumors or PyVT luminal tumors. In human cancers, PROCR was robustly expressed in half of TNBC cases. Experiments with patient-derived xenografts (PDXs) revealed that PROCR marks CSCs in this discrete subgroup (referred to as PROCR+ TNBC). Interfering with the function of PROCR using an inhibitory nanobody reduced the CSC numbers, arrested tumor growth and prevented rapid tumor recurrence. Our data suggest a key role of MaSC in breast tumorigenesis. Moreover, our work indicates that PROCR can be used as a biomarker to stratify TNBC into clinically relevant subgroups and may provide a novel targeted treatment strategy for this clinically important tumor subtype.
Collapse
|
39
|
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J 2019; 38:e100852. [PMID: 31267556 PMCID: PMC6627238 DOI: 10.15252/embj.2018100852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.
Collapse
Affiliation(s)
| | - Mathepan Mahendralingam
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Hal K Berman
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Rama Khokha
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| |
Collapse
|
40
|
Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. Biomed Pharmacother 2019; 115:108922. [DOI: 10.1016/j.biopha.2019.108922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/24/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
|
41
|
Yang H, Hao D, Liu C, Huang D, Chen B, Fan H, Liu C, Zhang L, Zhang Q, An J, Zhao J. Generation of functional dopaminergic neurons from human spermatogonial stem cells to rescue parkinsonian phenotypes. Stem Cell Res Ther 2019; 10:195. [PMID: 31248447 PMCID: PMC6598262 DOI: 10.1186/s13287-019-1294-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Recent progress in the induced generation of dopaminergic (DA) neurons from different types of stem cells or reprogrammed somatic cells holds tremendous potential for the treatment of Parkinson’s disease (PD). However, the lack of a reliable source for cell replacement therapy remains a major limitation in the treatment of human neurological disorders. Additionally, the current protocols for in vitro differentiation or cell reprogramming to generate human DA neurons are laborious, time-consuming, and expensive, and efficient conversion of human spermatogonial stem cells (hSSCs) to functional DA neurons has not yet been achieved. Methods Primary hSSCs from testicular tissues of patients were exposed to an improved induction system, which consisted mainly of olfactory ensheathing cell conditioned culture medium (OECCM) and a set of defined cell-extrinsic factors and small molecules. Morphological changes were assessed, along with the expression of various DA neuron phenotypic markers (e.g., Tuj-1, TH, Nurr1, DAT) and several critical pro-DA neurogenesis effectors (e.g., EN-1, Pitx3, Foxa2, Lmx1a, Lmx1b, and OTX2). In addition, transcriptome analysis was used to further evaluate the genetic similarity between the artificially differentiated DA neurons and genuine ones. Concomitantly, the functional properties of converted DA neurons including synapse formation, dopamine release, electrophysiological activity, and neuron-specific Ca2+ signaling images were determined. Finally, hSSCs in the early stage of induction were evaluated for survival, differentiation, migration, tumorigenicity in the mouse striatum, and improvement of functional deficits in MPTP-induced PD animals. Results The hSSC-derived neurons not only acquired neuronal morphological features but also expressed various phenotypic genes and protein characteristic of DA neurons and several effectors critical for pro-DA neurogenesis. Strikingly, as the period of induction was prolonged, expression of the critical molecules for DA neuron epigenetic status gradually increased while hSSC-specific markers sharply decreased. After 3 weeks of induction, the transdifferentiation efficiency reached 21%. In addition, hierarchical clustering analysis showed that the differentiated DA neurons closely resembled genuine ones. Furthermore, the hSSC-derived neurons gained sophisticated functional properties of wild-type DA neurons, and pro-induced hSSCs efficiently survived, migrated, and differentiated into DA neurons without tumorigenesis after transplantation into mouse striatum, leading to improvement of functional deficits in PD animals. Conclusions The results showed that, using the present improved straightforward approach, hSSCs could acquire DA neuron morphological features and functional properties and rescue parkinsonian phenotypes. Our strategy for the conversion of hSSCs into DA neurons is very efficient and thus may provide an alternative approach suitable for clinical cell therapy to treat neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Dingjun Hao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Cheng Liu
- Department of Foot and Ankle Surge, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Fan
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Cuicui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jingjing Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
42
|
GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene 2019; 38:5294-5307. [PMID: 30914799 DOI: 10.1038/s41388-019-0793-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Glycoprotein Nmb (GPNMB) is overexpressed in triple-negative and basal-like breast cancers and its expression is predictive of poor prognosis within this aggressive breast cancer subtype. GPNMB promotes breast cancer growth, invasion, and metastasis; however, its role in mammary tumor initiation remains unknown. To address this question, we overexpressed GPNMB in the mammary epithelium to generate MMTV/GPNMB transgenic mice and crossed these animals to the MMTV/Wnt-1 mouse model, which is known to recapitulate features of human basal breast cancers. We show that GPNMB alone does not display oncogenic properties; however, its expression dramatically accelerates tumor onset in MMTV/Wnt-1 mice. MMTV/Wnt-1 × MMTV/GPNMB bigenic mice also exhibit a significant increase in the growth rate of established primary tumors, which is attributable to increased proliferation and decreased apoptosis. To elucidate molecular mechanisms underpinning the tumor-promoting effects of GPNMB in this context, we interrogated activated pathways in tumors derived from the MMTV/Wnt-1 and MMTV/Wnt-1 × MMTV/GPNMB mice using RPPA analysis. These data revealed that MMTV/Wnt-1 × MMTV/GPNMB bigenic tumors exhibit a pro-growth signature characterized by elevated PI3K/AKT/mTOR signaling and increased β-catenin activity. Furthermore, we extended these observations to an independent Wnt-1 expressing model of aggressive breast cancer, and confirmed that GPNMB enhances canonical Wnt pathway activation, as evidenced by increased β-catenin transcriptional activity, in breast cancer cells and tumors co-expressing Wnt-1 and GPNMB. GPNMB-dependent engagement of β-catenin occurred, in part, through AKT activation. Taken together, these data ascribe a novel, pro-growth role for GPNMB in Wnt-1 expressing basal breast cancers.
Collapse
|
43
|
Stem Cells and Cellular Origins of Mammary Gland: Updates in Rationale, Controversies, and Cancer Relevance. Stem Cells Int 2019; 2019:4247168. [PMID: 30728840 PMCID: PMC6341275 DOI: 10.1155/2019/4247168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 01/31/2023] Open
Abstract
Evidences have supported the pivotal roles of stem cells in mammary gland development. Many molecular markers have been identified to characterize mammary stem cells. Cellular fate mapping of mammary stem cells by lineage tracing has put unprecedented insights into the mammary stem cell biology, which identified two subtypes of mammary stem cells, including unipotent and multipotent, which specifically differentiate to luminal or basal cells. The emerging single-cell sequencing profiles have given a more comprehensive understanding on the cellular hierarchy and lineage signatures of mammary epithelium. Besides, the stem cell niche worked as an essential regulator in sustaining the functions of mammary stem cells. In this review, we provide an overview of the characteristics of mammary stem cells. The cellular origins of mammary gland are discussed to understand the stem cell heterogeneity and their diverse differentiations. Importantly, current studies suggested that the breast cancer stem cells may originate from the mammary stem cells after specific mutations, indicating their close relationships. Here, we also outline the recent advances and controversies in the cancer relevance of mammary stem cells.
Collapse
|
44
|
Bu W, Liu Z, Jiang W, Nagi C, Huang S, Edwards DP, Jo E, Mo Q, Creighton CJ, Hilsenbeck SG, Leavitt AD, Lewis MT, Wong STC, Li Y. Mammary Precancerous Stem and Non-Stem Cells Evolve into Cancers of Distinct Subtypes. Cancer Res 2018; 79:61-71. [PMID: 30401712 DOI: 10.1158/0008-5472.can-18-1087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/20/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
There are distinct cell subpopulations in normal epithelial tissue, including stem cells, progenitor cells, and more differentiated cells, all of which have been extensively studied for their susceptibility to tumorigenesis. However, normal cells usually have to progress through a precancerous lesion state before becoming a full-blown tumor. Precancerous early lesions are heterogeneous, and the cell subset that is the primary source of the eventual tumor remains largely unknown. By using mouse models that are tailored to address this question, we identified a keratin 6a-expressing precancerous stem cell (PcSC) subset and a more differentiated whey acidic protein-positive (WAP+) cell subset in mammary precancerous lesions initiated by the Wnt1 oncogene. Both cell subsets rapidly progressed to cancer upon introduction of constitutively active versions of either HRAS or BRAF. However, the resulting tumors were dramatically different in protein profiles and histopathology: keratin 6a+ precancerous cells gave rise to adenocarcinoma, whereas WAP+ cells yielded metaplastic carcinoma with severe squamous differentiation and more robust activation of MEK/ERK signaling. Therefore, both stem and non-stem cells in mammary precancerous lesions can contribute to the eventual cancers, but their differentiation status determines the resulting cancer phenotype. This work identifies a previously unknown player in cancer heterogeneity and suggests that cancer prevention should target precancerous cells broadly and not be limited to PcSC. SIGNIFICANCE: This work uses a novel mouse mammary gland cancer model to show that tumors initiated from different precancerous mammary epithelial cells are distinct.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Zhenyu Liu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Chandandeep Nagi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Eunji Jo
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Qianxing Mo
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Andrew D Leavitt
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Laboratory Medicine and Medicine (Division of Hematology/Oncology), UCSF, San Francisco, California
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, Texas
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
Saeg F, Anbalagan M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig 2018; 5:39. [PMID: 30498750 DOI: 10.21037/sci.2018.10.05] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Breast cancer is a heterogeneous disease that accounts for 30% of all cancers diagnosed in women and over half a million deaths per year. Cancer stem cells (CSCs) make up a small subpopulation of cells within a tumor, are capable of self-renewal and, are responsible for tumor initiation, formation, and recurrence. Breast CSCs (BCSCs) have been the subject of concentrated research as potential targets for breast cancer therapies. Cell surface markers CD44+/CD24- have been established as minimum biomarkers for BCSCs and the upregulation of CD44 expression has been linked to tumor formation in numerous cancers. Additionally, the deregulation of Notch, Wnt/Frizzled/β-catenin, Hippo, and Hedgehog signaling pathways is believed to be responsible for the formation of CSCs and lead to tumor formation. Tumor heterogeneity is a key feature of therapy resistance and a major challenge. CSCs are predominantly senescent and inherently immune to chemotherapy drugs which rely on an overactive cell cycle. Current therapeutic strategies include targeting CSC signaling pathways that play critical roles in self-renewal and defense. Anti-CD44 antibodies have been shown to induce terminal differentiation in CSCs resulting in a significant decrease in tumor metastasis. Additionally, targeting the tumor microenvironment has been shown to increase the effectiveness of chemotherapy drugs. In this review, we attempt to provide an overview of breast cancer, the stem of its cause, and novel therapies currently being explored.
Collapse
Affiliation(s)
- Fouad Saeg
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,DeBakey Scholars Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
46
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
47
|
Yin P, Wang W, Zhang Z, Bai Y, Gao J, Zhao C. Wnt signaling in human and mouse breast cancer: Focusing on Wnt ligands, receptors and antagonists. Cancer Sci 2018; 109:3368-3375. [PMID: 30137666 PMCID: PMC6215866 DOI: 10.1111/cas.13771] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Wnt proteins, a group of secreted glycoproteins, mainly combine with receptors Frizzled (FZD) and/or low-density-lipoprotein receptor-related proteins 5/6 (LRP5/6), initiating β-catenin-dependent and -independent signaling pathways. These pathways, which can be regulated by some secreted antagonists such as secreted Frizzled-related proteins (SFRP) and dickkopf-related protein (DKK), play a critical role in embryo development and adult homeostasis. Overactivation of Wnt signaling has been implicated in some human diseases including cancer. Wnt transgenic mice provide convincing evidence that Wnt signaling is involved in breast cancer initiation and progression, which is further strengthened by observations on human clinical breast cancer patients and studies on in vitro cultured human breast cancer cells. This review focuses on the roles of Wnt ligands, receptors and antagonists in breast cancer development instead of molecules or signaling transactivating β-catenin independent on Wnt upstream components.
Collapse
Affiliation(s)
- Ping Yin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhongbo Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jian Gao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Nam JS, Sharma AR, Nguyen LT, Jagga S, Lee YH, Sharma G, Lee SS. Lysophosphatidic acid enhances breast cancer cells-mediated osteoclastogenesis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:503-511. [PMID: 30181697 PMCID: PMC6115344 DOI: 10.4196/kjpp.2018.22.5.503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 04/22/2018] [Accepted: 05/18/2018] [Indexed: 01/28/2023]
Abstract
Lysophosphatidic acid (LPA) is known to play a critical role in breast cancer metastasis to bone. In this study, we tried to investigate any role of LPA in the regulation of osteoclastogenic cytokines from breast cancer cells and the possibility of these secretory factors in affecting osteoclastogenesis. Effect of secreted cytokines on osteoclastogenesis was analyzed by treating conditioned media from LPA-stimulated breast cancer cells to differentiating osteoclasts. Result demonstrated that IL-8 and IL-11 expression were upregulated in LPA-treated MDA-MB-231 cells. IL-8 was induced in both MDA-MB-231 and MDA-MB-468, however, IL-11 was induced only in MDA-MB-231, suggesting differential LPARs participation in the expression of these cytokines. Expression of IL-8 but not IL-11 was suppressed by inhibitors of PI3K, NFkB, ROCK and PKC pathways. In the case of PKC activation, it was observed that PKCδ and PKCμ might regulate LPA-induced expression of IL-11 and IL-8, respectively, by using specific PKC subtype inhibitors. Finally, conditioned Medium from LPA-stimulated breast cancer cells induced osteoclastogenesis. In conclusion, LPA induced the expression of osteolytic cytokines (IL-8 and IL-11) in breast cancer cells by involving different LPA receptors. Enhanced expression of IL-8 by LPA may be via ROCK, PKCu, PI3K, and NFkB signaling pathways, while enhanced expression of IL-11 might involve PKCδ signaling pathway. LPA has the ability to enhance breast cancer cells-mediated osteoclastogenesis by inducing the secretion of cytokines such as IL-8 and IL-11.
Collapse
Affiliation(s)
- Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Lich Thi Nguyen
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Supriya Jagga
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 24252, Korea
| |
Collapse
|
49
|
Chen KH, Guo Y, Li L, Qu S, Zhao W, Lu QT, Mo QY, Yu BB, Zhou L, Lin GX, Sun YC, Zhu XD. Cancer stem cell-like characteristics and telomerase activity of the nasopharyngeal carcinoma radioresistant cell line CNE-2R. Cancer Med 2018; 7:4755-4764. [PMID: 30105829 PMCID: PMC6144248 DOI: 10.1002/cam4.1729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023] Open
Abstract
The radioresistance of nasopharyngeal carcinoma (NPC) may be related to cancer stem cells (CSCs), and the characteristics of CSCs may be maintained by telomerase activity. In this study, we explored the CSC‐like characteristics and telomerase activity of the NPC radioresistant cell line CNE‐2R. This work provides a foundation for future studies on stem cell‐targeted therapies by targeting the radioresistance of NPC. The expression of stem cell‐related genes/proteins and the hTERT gene/protein in CNE‐2R and its parent radiosensitive cell line CNE‐2 were detected using qPCR/Western Blot. Label‐retaining cells (LRCs) were detected through immunocytochemistry, and telomerase activity was detected using a PCR‐ELISA kit. CD133 expression was detected with flow cytometry. CNE‐2R‐CD133+ and CNE‐2R‐CD133− cells were separated with magnetic‐activated cell sorting. The proliferation and tumorigenesis capacities of CNE‐2R‐CD133+, CNE‐2R‐CD133−, and CNE‐2R cells were compared with a CCK‐8 assay, sphere formation assay, and an in vivo experiment. Our results showed that the expression of stem cell‐related genes and the hTERT gene in CNE‐2R cells was higher than those in CNE‐2 cells. Similarly, the expression of stem cell‐related proteins and the hTERT protein in CNE‐2R cells was markedly higher than those in CNE‐2 cells. The proportion of LRCs in CNE‐2R and CNE‐2 cells was (3.10 ± 0.63%) vs (0.40 ± 0.35%; P < 0.001), respectively. Telomerase activity in CNE‐2R cells was remarkably higher than that in CNE‐2 cells. Flow cytometry suggested that the CD133 positive rates in CNE‐2R and CNE‐2 cells were (2.49 ± 0.56%) vs (0.76 ± 0.25%; P = 0.008), respectively. Meanwhile, the proliferation capacity, tumorigenesis capacity, and telomerase activity of CNE‐2R‐CD133+ cells were notably higher than those of CNE‐2R‐CD133− and CNE‐2R cells. Collectively, CNE‐2R displayed CSC‐like characteristics; our results also showed that CNE‐2R cells, especially the sorted CSCs, had high telomerase activity levels.
Collapse
Affiliation(s)
- Kai-Hua Chen
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ya Guo
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Ling Li
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Song Qu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Wei Zhao
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qi-Teng Lu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qi-Yan Mo
- Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bin-Bin Yu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Lei Zhou
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guo-Xiang Lin
- Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong-Chu Sun
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China.,Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
50
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77-106. [PMID: 30258937 PMCID: PMC6147049 DOI: 10.1016/j.gendis.2018.05.001] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
As the most commonly occurring cancer in women worldwide, breast cancer poses a formidable public health challenge on a global scale. Breast cancer consists of a group of biologically and molecularly heterogeneous diseases originated from the breast. While the risk factors associated with this cancer varies with respect to other cancers, genetic predisposition, most notably mutations in BRCA1 or BRCA2 gene, is an important causative factor for this malignancy. Breast cancers can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of breast cancer based on their invasiveness relative to the primary tumor sites. It is important to distinguish between the various subtypes because they have different prognoses and treatment implications. As there are remarkable parallels between normal development and breast cancer progression at the molecular level, it has been postulated that breast cancer may be derived from mammary cancer stem cells. Normal breast development and mammary stem cells are regulated by several signaling pathways, such as estrogen receptors (ERs), HER2, and Wnt/β-catenin signaling pathways, which control stem cell proliferation, cell death, cell differentiation, and cell motility. Furthermore, emerging evidence indicates that epigenetic regulations and noncoding RNAs may play important roles in breast cancer development and may contribute to the heterogeneity and metastatic aspects of breast cancer, especially for triple-negative breast cancer. This review provides a comprehensive survey of the molecular, cellular and genetic aspects of breast cancer.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Bo Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Lei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Akhila Vuppalapati
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|