1
|
Lin YH, Piñan Basualdo FN, Kalpathy Venkiteswaran V, Misra S. Untethered soft magnetic pump for microfluidics-based Marangoni surfer. Sci Rep 2024; 14:20280. [PMID: 39217167 PMCID: PMC11365977 DOI: 10.1038/s41598-024-70944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Microfluidics has enabled the miniaturization of fluidic systems for various biomedical and industrial applications, including small-scale robotic propulsion. One mechanism for generating propulsive force through microfluidics is by exploiting the solutal Marangoni effect via releasing surfactant on the air-water interface. Surfactants locally reduce the surface tension, which leads to a surface stress that can propel the floating robot, called Marangoni surfer. However, so far the release of the surfactant is not controllable. In this study, we combine microfluidics-based Marangoni propulsion with a novel untethered magnetic pumping mechanism to enhance its controllability. The proposed magnetic micropump capitalizes on the interaction force between two soft magnets, which can generate a pumping force of 4.64 mN to actuate a membrane, and achieve a deformation of 450 μm. Net flow is achieved using a nozzle/diffuser flow rectifier whose efficacy as a function of the channel geometry is numerically studied. We investigate the flow rate of the pump with regard to the actuation frequency. Finally, we demonstrate its ability to control the motion of the Marangoni surfer.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands.
| | - Franco N Piñan Basualdo
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | | | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands.
- Surgical Robotics Laboratory, Department of Biomaterials and Biomedical Technology, University of Groningen and Univesity Medical Center Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
2
|
Raman R. Biofabrication of Living Actuators. Annu Rev Biomed Eng 2024; 26:223-245. [PMID: 38959387 DOI: 10.1146/annurev-bioeng-110122-013805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The impact of tissue engineering has extended beyond a traditional focus in medicine to the rapidly growing realm of biohybrid robotics. Leveraging living actuators as functional components in machines has been a central focus of this field, generating a range of compelling demonstrations of robots capable of muscle-powered swimming, walking, pumping, gripping, and even computation. In this review, we highlight key advances in fabricating tissue-scale cardiac and skeletal muscle actuators for a range of functional applications. We discuss areas for future growth including scalable manufacturing, integrated feedback control, and predictive modeling and also propose methods for ensuring inclusive and bioethics-focused pedagogy in this emerging discipline. We hope this review motivates the next generation of biomedical engineers to advance rational design and practical use of living machines for applications ranging from telesurgery to manufacturing to on- and off-world exploration.
Collapse
Affiliation(s)
- Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
3
|
Aboud MN, Al-Sowdani KH. A smartphone serves as a data logger for a fully automated lab-constructed microfluidic system. MethodsX 2024; 12:102584. [PMID: 38313696 PMCID: PMC10837093 DOI: 10.1016/j.mex.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024] Open
Abstract
Fluorescence is an innovative technique that has captivated scholars in recent years due to its superior sensitivity and selectivity. The development of microfluidic components has added to its appeal, particularly given the technology ability to control fluid using very small quantities (microliter range) and achieve high liquid throughput. We have combined these two technologies to develop a lab-constructed simple system for measuring fluorescence, notable for the following features:•The device constructed entirely in our lab and programmed for measuring the fluorescence of liquids using microfluidic technology, delivered excellent results. The regression coefficient R² (0.9995) was obtained five points between 0.001-0.01µg .ml-1. Moreover, the reproducibility standard deviation (%) of 0.008 µg .ml-1 fluorescein dye remained at zero, for ten repeated experiments.•The device was full automated using a smartphone as a data logger, and lab-constructed programs.•The results were satisfactory with a detection limit of 1 × 10-4 µg.ml-1. This proposed system can measure over 200 samples per hour making it highly efficient and eco-friendly due to the reduced use of reagents and lower waste production. The fully automated system can effectively be used to determine fluorescein dye concentrations. Another application (micro pump view) manages all actions required in this microfluidic system, such as operating the two lab-constructed peristaltic pumps.
Collapse
Affiliation(s)
- Maitham Najim Aboud
- Chemistry Department, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Kamail H. Al-Sowdani
- Chemistry Department, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| |
Collapse
|
4
|
Dong H, Lin J, Tao Y, Jia Y, Sun L, Li WJ, Sun H. AI-enhanced biomedical micro/nanorobots in microfluidics. LAB ON A CHIP 2024; 24:1419-1440. [PMID: 38174821 DOI: 10.1039/d3lc00909b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human beings encompass sophisticated microcirculation and microenvironments, incorporating a broad spectrum of microfluidic systems that adopt fundamental roles in orchestrating physiological mechanisms. In vitro recapitulation of human microenvironments based on lab-on-a-chip technology represents a critical paradigm to better understand the intricate mechanisms. Moreover, the advent of micro/nanorobotics provides brand new perspectives and dynamic tools for elucidating the complex process in microfluidics. Currently, artificial intelligence (AI) has endowed micro/nanorobots (MNRs) with unprecedented benefits, such as material synthesis, optimal design, fabrication, and swarm behavior. Using advanced AI algorithms, the motion control, environment perception, and swarm intelligence of MNRs in microfluidics are significantly enhanced. This emerging interdisciplinary research trend holds great potential to propel biomedical research to the forefront and make valuable contributions to human health. Herein, we initially introduce the AI algorithms integral to the development of MNRs. We briefly revisit the components, designs, and fabrication techniques adopted by robots in microfluidics with an emphasis on the application of AI. Then, we review the latest research pertinent to AI-enhanced MNRs, focusing on their motion control, sensing abilities, and intricate collective behavior in microfluidics. Furthermore, we spotlight biomedical domains that are already witnessing or will undergo game-changing evolution based on AI-enhanced MNRs. Finally, we identify the current challenges that hinder the practical use of the pioneering interdisciplinary technology.
Collapse
Affiliation(s)
- Hui Dong
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiawen Lin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
| | - Yihui Tao
- Department of Automation Control and System Engineering, University of Sheffield, Sheffield, UK
| | - Yuan Jia
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| | - Lining Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- Research Center of Aerospace Mechanism and Control, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Chandrasekharan HK, Wlodarczyk KL, MacPherson WN, Maroto-Valer MM. In-situ multicore fibre-based pH mapping through obstacles in integrated microfluidic devices. Sci Rep 2024; 14:2839. [PMID: 38310119 PMCID: PMC10838297 DOI: 10.1038/s41598-024-53106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.
Collapse
Affiliation(s)
- Harikumar K Chandrasekharan
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Krystian L Wlodarczyk
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - William N MacPherson
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
6
|
Deliorman M, Ali DS, Qasaimeh MA. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Biomed Eng Comput Biol 2023; 14:11795972231214387. [PMID: 38033395 PMCID: PMC10683381 DOI: 10.1177/11795972231214387] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits for building 3D tissue constructs-an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manipulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high precision automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshaping traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revolutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and healthcare systems.
Collapse
Affiliation(s)
| | - Dima Samer Ali
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| |
Collapse
|
7
|
Filippi M, Yasa O, Giachino J, Graf R, Balciunaite A, Stefani L, Katzschmann RK. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue. Adv Healthc Mater 2023; 12:e2300151. [PMID: 36911914 PMCID: PMC11468554 DOI: 10.1002/adhm.202300151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Oncay Yasa
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Jan Giachino
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Reto Graf
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Aiste Balciunaite
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Lisa Stefani
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | | |
Collapse
|
8
|
Shin M, Lim J, An J, Yoon J, Choi JW. Nanomaterial-based biohybrid hydrogel in bioelectronics. NANO CONVERGENCE 2023; 10:8. [PMID: 36763293 PMCID: PMC9918666 DOI: 10.1186/s40580-023-00357-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Despite the broadly applicable potential in the bioelectronics, organic/inorganic material-based bioelectronics have some limitations such as hard stiffness and low biocompatibility. To overcome these limitations, hydrogels capable of bridging the interface and connecting biological materials and electronics have been investigated for development of hydrogel bioelectronics. Although hydrogel bioelectronics have shown unique properties including flexibility and biocompatibility, there are still limitations in developing novel hydrogel bioelectronics using only hydrogels such as their low electrical conductivity and structural stability. As an alternative solution to address these issues, studies on the development of biohybrid hydrogels that incorporating nanomaterials into the hydrogels have been conducted for bioelectronic applications. Nanomaterials complement the shortcomings of hydrogels for bioelectronic applications, and provide new functionality in biohybrid hydrogel bioelectronics. In this review, we provide the recent studies on biohybrid hydrogels and their bioelectronic applications. Firstly, representative nanomaterials and hydrogels constituting biohybrid hydrogels are provided, and next, applications of biohybrid hydrogels in bioelectronics categorized in flexible/wearable bioelectronic devices, tissue engineering, and biorobotics are discussed with recent studies. In conclusion, we strongly believe that this review provides the latest knowledge and strategies on hydrogel bioelectronics through the combination of nanomaterials and hydrogels, and direction of future hydrogel bioelectronics.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Joohyun An
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea.
| |
Collapse
|
9
|
Design and control of soft biomimetic pangasius fish robot using fin ray effect and reinforcement learning. Sci Rep 2022; 12:21861. [PMID: 36529776 PMCID: PMC9760642 DOI: 10.1038/s41598-022-26179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Soft robots provide a pathway to accurately mimic biological creatures and be integrated into their environment with minimal invasion or disruption to their ecosystem. These robots made from soft deforming materials possess structural properties and behaviors similar to the bodies and organs of living creatures. However, they are difficult to develop in terms of integrated actuation and sensing, accurate modeling, and precise control. This article presents a soft-rigid hybrid robotic fish inspired by the Pangasius fish. The robot employs a flexible fin ray tail structure driven by a servo motor, to act as the soft body of the robot and provide the undulatory motion to the caudal fin of the fish. To address the modeling and control challenges, reinforcement learning (RL) is proposed as a model-free control strategy for the robot fish to swim and reach a specified target goal. By training and investigating the RL through experiments on real hardware, we illustrate the capability of the fish to learn and achieve the required task.
Collapse
|