1
|
Ishii W, Fuki M, Bu Ali EM, Sato S, Parmar B, Yamauchi A, Mulyadi CH, Uji M, Medina Rivero S, Watanabe G, Clark J, Kobori Y, Yanai N. Macrocyclic Parallel Dimer Showing Quantum Coherence of Quintet Multiexcitons at Room Temperature. J Am Chem Soc 2024; 146:25527-25535. [PMID: 39248728 DOI: 10.1021/jacs.4c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Singlet fission (SF) is a promising approach in quantum information science because it can generate spin-entangled quintet triplet pairs by photoexcitation independent of temperature. However, it is still challenging to rationally achieve quantum coherence at room temperature, which requires precise control of the orientation and dynamics of triplet pairs. Here we show that the quantum coherence of quintet multiexcitons can be achieved at room temperature by arranging two pentacene chromophores in parallel and in close proximity within a macrocycle. By making dynamic covalent Schiff-base bonds between aldehyde-modified pentacene derivatives, macrocyclic parallel dimer-1 (MPD-1) can be selectively synthesized in a high yield. MPD-1 exhibits fast subpicosecond SF in polystyrene film and generates spin-polarized quintet multiexcitons. Furthermore, the coherence time T2 of the MPD-1 quintet is as long as 648 ns, even at room temperature. This macrocyclic parallel dimer strategy opens up new possibilities for future quantum applications using molecular multilevel qubits.
Collapse
Affiliation(s)
- Wataru Ishii
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Eman M Bu Ali
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K
- Department of Physics, College of Science, King Faisal University, Al-Hassa, Hofuf 31982, Saudi Arabia
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Catherine Helenna Mulyadi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Uji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Samara Medina Rivero
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K
- Department of Physical Chemistry, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Go Watanabe
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Jenny Clark
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Zhang C, Ye C, Yao J, Wu LZ. Spin-related excited-state phenomena in photochemistry. Natl Sci Rev 2024; 11:nwae244. [PMID: 39211835 PMCID: PMC11360185 DOI: 10.1093/nsr/nwae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities. Then, we focus on the recent advances in terms of light-induced magnetic properties, excited-state magneto-optical effects and spin-dependent photochemical reactions. The review aims to provide a comprehensive overview to utilize the spin multiplicity of the excited state in manipulating the above photophysical and photochemical processes. Finally, we discuss the existing challenges in the emerging field of spin photochemistry and future opportunities such as smart magnetic materials, optical information technology and spin-enhanced photocatalysis.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Gish MK, Snell K, Thorley KJ, Anthony JE, Johnson JC. Surface Loading Dictates Triplet Production via Singlet Fission in Anthradithiophene Sensitized TiO 2 Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:13944-13951. [PMID: 39193258 PMCID: PMC11345824 DOI: 10.1021/acs.jpcc.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Singlet fission, the process of transforming a singlet excited state into two lower energy triplet excited states, is a promising strategy for improving the efficiency of dye-sensitized solar cells. The difficulty in utilizing singlet fission molecules in this architecture is understanding and controlling the orientation of dyes on mesoporous metal oxide surfaces to maximize triplet production and minimize detrimental deactivation pathways, such as electron injection from the singlet or excimer formation. Here, we varied the concentration of loading solutions of two anthradithiophene dyes derivatized with either one or two carboxylic acid groups for binding to a metal oxide surface and studied their photophysics using ultrafast transient absorption spectroscopy. For the single carboxylic acid case, an increase in dye surface coverage led to an increase in apparent triplet excited-state growth via singlet fission, while the same increase in coverage with two carboxylic acids did not. This study represents a step toward controlling the interactions between molecules at mesoporous interfaces.
Collapse
Affiliation(s)
- Melissa K. Gish
- Materials,
Chemistry and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Katherine Snell
- Materials,
Chemistry and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Karl J. Thorley
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Justin C. Johnson
- Materials,
Chemistry and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Eaves JD. Multielectron Dynamics in the Condensed Phase: Quantum Structure-Function Relationships. Annu Rev Phys Chem 2024; 75:437-456. [PMID: 38941526 DOI: 10.1146/annurev-physchem-042018-052515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.
Collapse
Affiliation(s)
- Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA;
| |
Collapse
|
5
|
Lin LC, Dill RD, Thorley KJ, Parkin SR, Anthony JE, Johnson JC, Damrauer NH. Revealing the Singlet Fission Mechanism for a Silane-Bridged Thienotetracene Dimer. J Phys Chem A 2024; 128:3982-3992. [PMID: 38717589 PMCID: PMC11129308 DOI: 10.1021/acs.jpca.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Tetraceno[2,3-b]thiophene is regarded as a strong candidate for singlet fission-based solar cell applications due to its mixed characteristics of tetracene and pentacene that balance exothermicity and triplet energy. An electronically weakly coupled tetraceno[2,3-b]thiophene dimer (Et2Si(TIPSTT)2) with a single silicon atom bridge has been synthesized, providing a new platform to investigate the singlet fission mechanism involving the two acene chromophores. We study the excited state dynamics of Et2Si(TIPSTT)2 by monitoring the evolution of multiexciton coupled triplet states, 1TT to 5TT to 3TT to T1 + S0, upon photoexcitation with transient absorption, temperature-dependent transient absorption, and transient/pulsed electron paramagnetic resonance spectroscopies. We find that the photoexcited singlet lifetime is 107 ps, with 90% evolving to form the TT state, and the complicated evolution between the multiexciton states is unraveled, which can be an important reference for future efforts toward tetraceno[2,3-b]thiophene-based singlet fission solar cells.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan D. Dill
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Karl J. Thorley
- Department
of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Sean R. Parkin
- Department
of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - John E. Anthony
- Department
of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niels H. Damrauer
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Wang H, Yin B, Bai J, Wei X, Huang W, Chang Q, Jia H, Chen R, Zhai Y, Wu Y, Zhang C. Giant magneto-photoluminescence at ultralow field in organic microcrystal arrays for on-chip optical magnetometer. Nat Commun 2024; 15:3995. [PMID: 38734699 PMCID: PMC11088683 DOI: 10.1038/s41467-024-48464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Optical detection of magnetic field is appealing for integrated photonics; however, the light-matter interaction is usually weak at low field. Here we observe that the photoluminescence (PL) decreases by > 40% at 10 mT in rubrene microcrystals (RMCs) prepared by a capillary-bridge assembly method. The giant magneto-PL (MPL) relies on the singlet-triplet conversion involving triplet-triplet pairs, through the processes of singlet fission (SF) and triplet fusion (TF) during radiative decay. Importantly, the size of RMCs is critical for maximizing MPL as it influences on the photophysical processes of spin state conversion. The SF/TF process is quantified by measuring the prompt/delayed PL with time-resolved spectroscopies, which shows that the geminate SF/TF associated with triplet-triplet pairs are responsible for the giant MPL. Furthermore, the RMC-based magnetometer is constructed on an optical chip, which takes advantages of remarkable low-field sensitivity over a broad range of frequencies, representing a prototype of emerging opto-spintronic molecular devices.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junli Bai
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiao Wei
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- Ji Hua Laboratory Foshan, Guangdong, China
| | - Wenjin Huang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Qingda Chang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Yuchen Wu
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Kim J, Teo HT, Hong Y, Cha H, Kim W, Chi C, Kim D. Elucidating Singlet-Fission-Born Multiexciton Dynamics via Molecular Engineering: A Dilution Principle Extended to Quintet Triplet Pair. J Am Chem Soc 2024; 146:10833-10846. [PMID: 38578848 DOI: 10.1021/jacs.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
8
|
Palmer JR, Williams ML, Young RM, Peinkofer KR, Phelan BT, Krzyaniak MD, Wasielewski MR. Oriented Triplet Excitons as Long-Lived Electron Spin Qutrits in a Molecular Donor-Acceptor Single Cocrystal. J Am Chem Soc 2024; 146:1089-1099. [PMID: 38156609 DOI: 10.1021/jacs.3c12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 μs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.
Collapse
Affiliation(s)
- Jonathan R Palmer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kathryn R Peinkofer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
9
|
Reid OG, Johnson JC, Eaves JD, Damrauer NH, Anthony JE. Molecular Control of Triplet-Pair Spin Polarization and Its Optoelectronic Magnetic Resonance Probes. Acc Chem Res 2024; 57:59-69. [PMID: 38103045 PMCID: PMC10765369 DOI: 10.1021/acs.accounts.3c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
ConspectusPreparing and manipulating pure magnetic states in molecular systems are the key initial requirements for harnessing the power of synthetic chemistry to drive practical quantum sensing and computing technologies. One route for achieving the requisite higher spin states in organic systems exploits the phenomenon of singlet fission, which produces pairs of triplet excited states from initially photoexcited singlets in molecular assemblies with multiple chromophores. The resulting spin states are characterized by total spin (quintet, triplet, or singlet) and its projection onto a specified molecular or magnetic field axis. These excited states are typically highly polarized but exhibit an impure spin population pattern. Herein, we report the prediction and experimental verification of molecular design rules that drive the population of a single pure magnetic state and describe the progress toward its experimental realization.A vital feature of this work is the close partnership among theory, chemical synthesis, and spectroscopy. We begin by presenting our theoretical framework for understanding spin manifold interconversion in singlet fission systems. This theory makes specific testable predictions about the intermolecular structure and orientation relative to an external magnetic field that should lead to pure magnetic state preparation and provides a powerful tool for interpreting magnetic spectra. We then test these predictions through detailed magnetic spectroscopy experiments on a series of new molecular architectures that meet one or more of the identified structural criteria. Many of these architectures rely on the synthesis of molecules with features unique to this effort: rigid bridges between chromophores in dimers, heteroacenes with tailored singlet/triplet-pair energy level matching, or side-group engineering to produce specific crystal structures. The spin evolution of these systems is revealed through our application and development of several magnetic resonance methods, each of which has different sensitivities and relevance in environments relevant to quantum applications.Our theoretical predictions prove to be remarkably consistent with our experimental results, though experimentally meeting all the structural prescriptions demanded by theory for true pure-state preparation remains a challenge. Our magnetic spectra agree with our model of triplet-pair behavior, including funneling of the population to the ms = 0 magnetic sublevel of the quintet under specified conditions in dimers and crystals, showing that this phenomenon is subject to control through molecular design. Moreover, our demonstration of novel and/or highly sensitive detection mechanisms of spin states in singlet fission systems, including photoluminescence (PL), photoinduced absorption (PA), and magnetoconductance (MC), points the way toward both a deeper understanding of how these systems evolve and technologically feasible routes toward experiments at the single-molecule quantum limit that are desirable for computational applications.
Collapse
Affiliation(s)
- Obadiah G. Reid
- National
Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, Boulder, Colorado 80309, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, Boulder, Colorado 80309, United States
| | - Joel D. Eaves
- Renewable
and Sustainable Energy Institute, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niels H. Damrauer
- Renewable
and Sustainable Energy Institute, Boulder, Colorado 80309, United States
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
10
|
Lubert-Perquel D, Acharya S, Johnson JC. Optically Addressing Exciton Spin and Pseudospin in Nanomaterials for Spintronics Applications. ACS APPLIED OPTICAL MATERIALS 2023; 1:1742-1760. [PMID: 38037653 PMCID: PMC10683369 DOI: 10.1021/acsaom.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Oriented exciton spins that can be generated and manipulated optically are of interest for a range of applications, including spintronics, quantum information science, and neuromorphic computing architectures. Although materials that host such excitons often lack practical coherence times for use on their own, strategic transduction of the magnetic information across interfaces can combine fast modulation with longer-term storage and readout. Several nanostructure systems have been put forward due to their interesting magneto-optical properties and their possible manipulation using circularly polarized light. These material systems are presented here, namely two-dimensional (2D) systems due to the unique spin-valley coupling properties and quantum dots for their exciton fine structure. 2D magnets are also discussed for their anisotropic spin behavior and extensive 2D magnetic states that are not yet fully understood but could pave the way for emergent techniques of magnetic control. This review also details the experimental and theoretical tools to measure and understand these systems along with a discussion on the progress of optical manipulation of spins and magnetic order transitions.
Collapse
Affiliation(s)
- Daphné Lubert-Perquel
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Swagata Acharya
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- Materials, Chemical, and
Computational Science Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
11
|
Lin LC, Smith T, Ai Q, Rugg BK, Risko C, Anthony JE, Damrauer NH, Johnson JC. Multiexciton quintet state populations in a rigid pyrene-bridged parallel tetracene dimer. Chem Sci 2023; 14:11554-11565. [PMID: 37886089 PMCID: PMC10599476 DOI: 10.1039/d3sc03153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
The multiexciton quintet state, 5TT, generated as a singlet fission intermediate in pairs of molecular chromophores, is a promising candidate as a qubit or qudit in future quantum information science schemes. In this work, we synthesize a pyrene-bridged parallel tetracene dimer, TPT, with an optimized interchromophore coupling strength to prevent the dissociation of 5TT to two decorrelated triplet (T1) states, which would contaminate the spin-state mixture. Long-lived and strongly spin-polarized pure 5TT state population is observed via transient absorption spectroscopy and transient/pulsed electron paramagnetic resonance spectroscopy, and its lifetime is estimated to be >35 µs, with the dephasing time (T2) for the 5TT-based qubit measured to be 726 ns at 10 K. Direct relaxation from 1TT to the ground state does diminish the overall excited state population, but the exclusive 5TT population at large enough persistent density for pulsed echo determination of spin coherence time is consistent with recent theoretical models that predict such behavior for strict parallel chromophore alignment and large exchange coupling.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
| | - Tanner Smith
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Qianxiang Ai
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Brandon K Rugg
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - John E Anthony
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| | - Justin C Johnson
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| |
Collapse
|
12
|
He G, Parenti KR, Budden PJ, Niklas J, Macdonald T, Kumarasamy E, Chen X, Yin X, McCamey DR, Poluektov OG, Campos LM, Sfeir MY. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J Am Chem Soc 2023; 145:22058-22068. [PMID: 37787467 DOI: 10.1021/jacs.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter J Budden
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Macdonald
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xing Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
13
|
Miller EG, Singh M, Parkin S, Sammakia T, Damrauer NH. Preparation of a Rigid and Nearly Coplanar Bis-tetracene Dimer through an Application of the CANAL Reaction. J Org Chem 2023; 88:12251-12256. [PMID: 37607040 DOI: 10.1021/acs.joc.3c00809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A rigid tetracene dimer with a substantial interchromophore distance has been prepared through an application of the recently developed catalytic arene-norbornene annulation (CANAL) reaction. An iterative cycloaddition route was found to be unsuccessful, so a shorter route was adopted whereby fragments were coupled in the penultimate step to form a 13:1 mixture of two diastereomers, the major of which was isolated and crystallized. Constituent tetracene moieties are linked with a rigid, well-defined bridge and feature a near-co-planar mutual orientation of the acenes.
Collapse
Affiliation(s)
- Ethan G Miller
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Madhu Singh
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Tarek Sammakia
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Dill RD, Joshi G, Thorley KJ, Anthony JE, Fluegel B, Johnson JC, Reid OG. Near-Infrared Absorption Features of Triplet-Pair States Assigned by Photoinduced-Absorption-Detected Magnetic Resonance. J Phys Chem Lett 2023; 14:2387-2394. [PMID: 36848633 PMCID: PMC10009807 DOI: 10.1021/acs.jpclett.2c03665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Singlet fission proceeds through a manifold of triplet-pair states that are exceedingly difficult to distinguish spectroscopically. Here, we introduce a new implementation of photoinduced-absorption-detected magnetic resonance (PADMR) and use it to understand the excited-state absorption spectrum of a tri-2-pentylsilylethynyl pentadithiophene (TSPS-PDT) film. These experiments allow us to directly correlate magnetic transitions driven by RF with electronic transitions in the visible and near-infrared spectrum with high sensitivity. We find that the new near-infrared excited-state transitions that arise in thin films of TSPS-PDT are correlated with the magnetic transitions of T1, not 5TT. Thus, we assign these features to the excited-state absorption of 1TT, which is depleted when T1 states are driven to a spin configuration that forbids subsequent fusion. These results clarify the disputed origin of triplet-associated near-infrared absorption features in singlet-fission materials and demonstrate an incisive general purpose tool for studying the evolution of high-spin excited states.
Collapse
Affiliation(s)
- Ryan D. Dill
- University
of Colorado Boulder, Department of Chemistry, Boulder, Colorado 80309, United States
| | - Gajadhar Joshi
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Karl J. Thorley
- University
of Kentucky Center for Applied Energy Research, Lexington, Kentucky 40511, United States
| | - John E. Anthony
- University
of Kentucky Center for Applied Energy Research, Lexington, Kentucky 40511, United States
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brian Fluegel
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado, Boulder, Colorado 80309, United States
| | - Obadiah G. Reid
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Dill RD, Smyser KE, Rugg BK, Damrauer NH, Eaves JD. Entangled spin-polarized excitons from singlet fission in a rigid dimer. Nat Commun 2023; 14:1180. [PMID: 36859382 PMCID: PMC9977721 DOI: 10.1038/s41467-023-36529-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Singlet fission, a process that splits a singlet exciton into a biexciton, has promise in quantum information. We report time-resolved electron paramagnetic resonance measurements on a conformationally well-defined acene dimer molecule, TIPS-BP1', designed to exhibit strongly state-selective relaxation to specific magnetic spin sublevels. The resulting optically pumped spin polarization is a nearly pure initial state from the ensemble. The long-lived spin coherences modulate the signal intrinsically, allowing a measurement scheme that substantially removes noise and uncertainty in the magnetic resonance spectra. A nonadiabatic transition theory with a minimal number of spectroscopic parameters allows the quantitative assignment and interpretation of the spectra. In this work, we show that the rigid dimer TIPS-BP1' supports persistent spin coherences at temperatures far higher than those used in conventional superconducting quantum hardware.
Collapse
Affiliation(s)
- Ryan D. Dill
- grid.266190.a0000000096214564Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Kori E. Smyser
- grid.266190.a0000000096214564Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Brandon K. Rugg
- grid.419357.d0000 0001 2199 3636National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Niels H. Damrauer
- grid.266190.a0000000096214564Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309 USA ,grid.266190.a0000000096214564Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Joel D. Eaves
- grid.266190.a0000000096214564Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309 USA ,grid.266190.a0000000096214564Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
16
|
Singlet fission as a polarized spin generator for dynamic nuclear polarization. Nat Commun 2023; 14:1056. [PMID: 36859419 PMCID: PMC9977948 DOI: 10.1038/s41467-023-36698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Singlet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP). We form supramolecular assemblies of a few pentacene chromophores and use SF-born quintet spins to achieve DNP of water-glycerol, the most basic biological matrix, as evidenced by the dependence of nuclear polarization enhancement on magnetic field and microwave power. Our demonstration opens a use of SF as a polarized spin generator in bio-quantum technology.
Collapse
|