1
|
Gries S, Brinker M, Zeller-Plumhoff B, Rings D, Krekeler T, Longo E, Greving I, Huber P. Wafer-Scale Fabrication of Hierarchically Porous Silicon and Silica by Active Nanoparticle-Assisted Chemical Etching and Pseudomorphic Thermal Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206842. [PMID: 36794297 DOI: 10.1002/smll.202206842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/19/2022] [Indexed: 06/02/2023]
Abstract
Many biological materials exhibit a multiscale porosity with small, mostly nanoscale pores as well as large, macroscopic capillaries to simultaneously achieve optimized mass transport capabilities and lightweight structures with large inner surfaces. Realizing such a hierarchical porosity in artificial materials necessitates often sophisticated and expensive top-down processing that limits scalability. Here, an approach that combines self-organized porosity based on metal-assisted chemical etching (MACE) with photolithographically induced macroporosity for the synthesis of single-crystalline silicon with a bimodal pore-size distribution is presented, i.e., hexagonally arranged cylindrical macropores with 1 µm diameter separated by walls that are traversed by pores 60 nm across. The MACE process is mainly guided by a metal-catalyzed reduction-oxidation reaction, where silver nanoparticles (AgNPs) serve as the catalyst. In this process, the AgNPs act as self-propelled particles that are constantly removing silicon along their trajectories. High-resolution X-ray imaging and electron tomography reveal a resulting large open porosity and inner surface for potential applications in high-performance energy storage, harvesting and conversion or for on-chip sensorics and actuorics. Finally, the hierarchically porous silicon membranes can be transformed structure-conserving by thermal oxidation into hierarchically porous amorphous silica, a material that could be of particular interest for opto-fluidic and (bio-)photonic applications due to its multiscale artificial vascularization.
Collapse
Affiliation(s)
- Stella Gries
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Denickestr. 10, 21073, Hamburg, Germany
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Hybrid Nanostructures, CHyN, University of Hamburg, 22607, Hamburg, Germany
| | - Manuel Brinker
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Denickestr. 10, 21073, Hamburg, Germany
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Hybrid Nanostructures, CHyN, University of Hamburg, 22607, Hamburg, Germany
| | - Berit Zeller-Plumhoff
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, 21502, Geesthacht, Germany
| | - Dagmar Rings
- Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Tobias Krekeler
- Electron Microscopy Unit, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Elena Longo
- Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149, Basovizza, Italien
| | - Imke Greving
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institute of Materials Physics, Helmholtz Zentrum Hereon, 21502, Geesthacht, Germany
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, Denickestr. 10, 21073, Hamburg, Germany
- Center for X-Ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Centre for Hybrid Nanostructures, CHyN, University of Hamburg, 22607, Hamburg, Germany
| |
Collapse
|
2
|
Roggeveen JV, Stone HA, Kurzthaler C. Transport of a passive scalar in wide channels with surface topography: An asymptotic theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35. [PMID: 37073470 DOI: 10.1088/1361-648x/acc8ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
We generalize classical dispersion theory for a passive scalar to derive an asymptotic long-time convection-diffusion equation for a solute suspended in a wide, structured channel and subject to a steady low-Reynolds-number shear flow. Our asymptotic theory relies on a domain perturbation approach for small roughness amplitudes of the channel and holds for general surface shapes expandable as a Fourier series. We determine an anisotropic dispersion tensor, which depends on the characteristic wavelengths and amplitude of the surface structure. For surfaces whose corrugations are tilted with respect to the applied flow direction, we find that dispersion along the principal direction (i.e. the principal eigenvector of the dispersion tensor) is at an angle to the main flow direction and becomes enhanced relative to classical Taylor dispersion. In contrast, dispersion perpendicular to it can decrease compared to the short-time diffusivity of the particles. Furthermore, for an arbitrary surface shape represented in terms of a Fourier decomposition, we find that each Fourier mode contributes at leading order a linearly-independent correction to the classical Taylor dispersion diffusion tensor.
Collapse
Affiliation(s)
- J V Roggeveen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - H A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - C Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| |
Collapse
|
3
|
Yang M, Wang J, Zhang M, Liu K, Huang H. Particle oscillation at corrugated membrane-water interface: An in-situ direct observation and implication to membrane fouling control. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|