1
|
Mousa M, Rezanejad A, Gorissen B, Forte AE. Frequency-Controlled Fluidic Oscillators for Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408879. [PMID: 39379021 DOI: 10.1002/advs.202408879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Electronic-free controls have recently emerged as one of the main topics in soft robotics. However, electronic-free fluidic circuits still lack controllability and reconfigurability to achieve different functions. Here, reconfigurable pneumatic valves that widen the design space of fluidic circuits are presented. The significance of two parameters on the valve's operation: a pre-defined manufacturing parameter that sets the initial operational range of the valve, and a second, on-the-fly modifiable geometric parameter that shifts the behavior of the valve during operation is shown. It is demonstrated that equipping the valve with these reconfigurable features enables the tuning of fluidic oscillatory circuits as illustrated by two examples: a frequency-controlled relaxation oscillator and a reconfigurable ring oscillator. The relaxation oscillator is employed to control the actuation frequency of a soft hopper, which is able to achieve 80 to 125 hops min-1 and a hopping speed ranging from ≈1 to ≈1.185 BL s-1. Additionally, the reconfigurable ring oscillator is used to demonstrate how each output frequency can be controlled independently, via a soft robotic crawler that can navigate in three directions, and a volume-controlled fluidic pump able to achieve mixing of solutions in environments where electronic components cannot operate.
Collapse
Affiliation(s)
- Mostafa Mousa
- Department of Engineering, King's College London, Strand, London, WC2R2LS, UK
| | - Ashkan Rezanejad
- Department of Engineering, King's College London, Strand, London, WC2R2LS, UK
| | - Benjamin Gorissen
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, Leuven, 3000, Belgium
- Flanders Make, Celestijnenlaan 300, Leuven, 3000, Belgium
| | - Antonio E Forte
- Department of Engineering, King's College London, Strand, London, WC2R2LS, UK
| |
Collapse
|
2
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Moran AM, Vo VT, McDonald KJ, Sultania P, Langenbrunner E, Chong JHV, Naik A, Kinnicutt L, Li J, Ranzani T. An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots. COMMUNICATIONS ENGINEERING 2024; 3:117. [PMID: 39179768 PMCID: PMC11344064 DOI: 10.1038/s44172-024-00251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to -100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks.
Collapse
Affiliation(s)
- Anna Maria Moran
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Vi T Vo
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Kevin J McDonald
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Pranav Sultania
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Eva Langenbrunner
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | | | - Amartya Naik
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Lorenzo Kinnicutt
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Jingshuo Li
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Materials Science and Engineering Division, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Chen L, Ren M, Zhou J, Zhou X, Liu F, Di J, Xue P, Li C, Li Q, Li Y, Wei L, Zhang Q. Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc Natl Acad Sci U S A 2024; 121:e2407971121. [PMID: 39110725 PMCID: PMC11331142 DOI: 10.1073/pnas.2407971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Ming Ren
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Jianxian Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Fan Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Jiangtao Di
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou215009, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Yang Li
- School of Microelectronics, Shandong University, Jinan250101, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| |
Collapse
|
5
|
El Helou C, Hyatt LP, Buskohl PR, Harne RL. Intelligent electroactive material systems with self-adaptive mechanical memory and sequential logic. Proc Natl Acad Sci U S A 2024; 121:e2317340121. [PMID: 38527196 PMCID: PMC10998560 DOI: 10.1073/pnas.2317340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
By synthesizing the requisite functionalities of intelligence in an integrated material system, it may become possible to animate otherwise inanimate matter. A significant challenge in this vision is to continually sense, process, and memorize information in a decentralized way. Here, we introduce an approach that enables all such functionalities in a soft mechanical material system. By integrating nonvolatile memory with continuous processing, we develop a sequential logic-based material design framework. Soft, conductive networks interconnect with embedded electroactive actuators to enable self-adaptive behavior that facilitates autonomous toggling and counting. The design principles are scaled in processing complexity and memory capacity to develop a model 8-bit mechanical material that can solve linear algebraic equations based on analog mechanical inputs. The resulting material system operates continually to monitor the current mechanical configuration and to autonomously search for solutions within a desired error. The methods created in this work are a foundation for future synthetic general intelligence that can empower materials to autonomously react to diverse stimuli in their environment.
Collapse
Affiliation(s)
- Charles El Helou
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Lance P. Hyatt
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Philip R. Buskohl
- Functional Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH45433
| | - Ryan L. Harne
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
6
|
Jiao Z, Hu Z, Shi Y, Xu K, Lin F, Zhu P, Tang W, Zhong Y, Yang H, Zou J. Reprogrammable, intelligent soft origami LEGO coupling actuation, computation, and sensing. Innovation (N Y) 2024; 5:100549. [PMID: 38192379 PMCID: PMC10772819 DOI: 10.1016/j.xinn.2023.100549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Tightly integrating actuation, computation, and sensing in soft materials allows soft robots to respond autonomously to their environments. However, fusing these capabilities within a single soft module in an efficient, programmable, and compatible way is still a significant challenge. Here, we introduce a strategy for integrating actuation, computation, and sensing capabilities in soft origami. Unified and plug-and-play soft origami modules can be reconfigured into diverse morphologies with specific functions or reprogrammed into a variety of soft logic circuits, similar to LEGO bricks. We built an untethered autonomous soft turtle that is able to sense stimuli, store data, process information, and perform swimming movements. The function multiplexing and signal compatibility of the origami minimize the number of soft devices, thereby reducing the complexity and redundancy of soft robots. Moreover, this origami also exhibits strong damage resistance and high durability. We envision that this work will offer an effective way to readily create on-demand soft robots that can operate in unknown environments.
Collapse
Affiliation(s)
- Zhongdong Jiao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhenhan Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuhao Shi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Fangye Lin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Pingan Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Guo X, Li W, Fang F, Chen H, Zhao L, Fang X, Yi Z, Shao L, Meng G, Zhang W. Encoded sewing soft textile robots. SCIENCE ADVANCES 2024; 10:eadk3855. [PMID: 38181076 PMCID: PMC10776007 DOI: 10.1126/sciadv.adk3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Incorporating soft actuation with soft yet durable textiles could effectively endow the latter with active and flexible shape morphing and motion like mollusks and plants. However, creating highly programmable and customizable soft robots based on textiles faces a longstanding design and manufacturing challenge. Here, we report a methodology of encoded sewing constraints for efficiently constructing three-dimensional (3D) soft textile robots through a simple 2D sewing process. By encoding heterogeneous stretching properties into three spatial seams of the sewed 3D textile shells, nonlinear inflation of the inner bladder can be guided to follow the predefined spatial shape and actuation sequence, for example, tendril-like shape morphing, tentacle-like sequential manipulation, and bioinspired locomotion only controlled by single pressure source. Such flexible, efficient, scalable, and low-cost design and formation methodology will accelerate the development and iteration of soft robots and also open up more opportunities for safe human-robot interactions, tailored wearable devices, and health care.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Fuyi Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huyue Chen
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linchuan Zhao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Yi
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Shao
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
9
|
Shi HH, Pan Y, Xu L, Feng X, Wang W, Potluri P, Hu L, Hasan T, Huang YYS. Sustainable electronic textiles towards scalable commercialization. NATURE MATERIALS 2023; 22:1294-1303. [PMID: 37500958 DOI: 10.1038/s41563-023-01615-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Textiles represent a fundamental material format that is extensively integrated into our everyday lives. The quest for more versatile and body-compatible wearable electronics has led to the rise of electronic textiles (e-textiles). By enhancing textiles with electronic functionalities, e-textiles define a new frontier of wearable platforms for human augmentation. To realize the transformational impact of wearable e-textiles, materials innovations can pave the way for effective user adoption and the creation of a sustainable circular economy. We propose a repair, recycle, replacement and reduction circular e-textile paradigm. We envisage a systematic design framework embodying material selection and biofabrication concepts that can unify environmental friendliness, market viability, supply-chain resilience and user experience quality. This framework establishes a set of actionable principles for the industrialization and commercialization of future sustainable e-textile products.
Collapse
Affiliation(s)
- HaoTian Harvey Shi
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Yifei Pan
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xueming Feng
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
- Micro- and Nano-technology Research Centre, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge, UK
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Prasad Potluri
- Department of Materials, University of Manchester, Manchester, UK
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Tawfique Hasan
- Department of Engineering, University of Cambridge, Cambridge, UK
- Cambridge Graphene Centre, University of Cambridge, Cambridge, UK
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, UK.
- The Nanoscience Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Kim TY, Hong SH, Jeong SH, Bae H, Cheong S, Choi H, Hahn SK. Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303401. [PMID: 37499253 DOI: 10.1002/adma.202303401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hanseo Bae
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
11
|
Liu X, Zhu W, Deng P, Li T. Redesigning Natural Materials for Energy, Water, Environment, and Devices. ACS NANO 2023; 17:18657-18668. [PMID: 37725794 DOI: 10.1021/acsnano.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The United Nations Framework Convention on Climate Change (UNFCCC) acknowledges that global cooperation is paramount to mitigate climate change and further warming. The global community is committed to renewable energy and natural materials to tackle this challenge for all humankind. The widespread use of natural materials is embraced as one such action to reach net-zero carbon emissions. Given the hierarchical framework and earth abundance, cellulose-based materials extend their negative carbon benefits to our daily products and accelerate our pace toward carbon neutrality. Here, we present an overview of recent developments of cellulose-based materials in upsurging applications in radiative cooling, thermal insulation, nanofluidics, and wearable devices. We also highlight various modifications and functionalized processes that transform massive amounts of cellulose into green products. The prosperous development of functionalized cellulose materials aligns with a circular economy. Expedited interdisciplinary fundamental investigations are expected to make fibrillated cellulose penetrate more into carbon downdraw at speed and scale.
Collapse
Affiliation(s)
- Xiaojie Liu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wenkai Zhu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pengfei Deng
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tian Li
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Bell M, Ye K, Yap TF, Rajappan A, Liu Z, Tao YJ, Preston DJ. Rapid In Situ Thermal Decontamination of Wearable Composite Textile Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44521-44532. [PMID: 37695080 PMCID: PMC10521748 DOI: 10.1021/acsami.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Pandemics stress supply lines and generate shortages of personal protective equipment (PPE), in part because most PPE is single-use and disposable, resulting in a need for constant replenishment to cope with high-volume usage. To better prepare for the next pandemic and to reduce waste associated with disposable PPE, we present a composite textile material capable of thermally decontaminating its surface via Joule heating. This material can achieve high surface temperatures (>100 °C) and inactivate viruses quickly (<5 s of heating), as evidenced experimentally with the surrogate virus HCoV-OC43 and in agreement with analytical modeling for both HCoV-OC43 and SARS-CoV-2. Furthermore, it does not require doffing because it remains relatively cool near the skin (<40 °C). The material can be easily integrated into clothing and provides a rapid, reusable, in situ decontamination method capable of reducing PPE waste and mitigating the risk of supply line disruptions in times of need.
Collapse
Affiliation(s)
- Marquise
D. Bell
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kai Ye
- Department
of Biosciences, Wiess School of Natural Sciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Te Faye Yap
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anoop Rajappan
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zhen Liu
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yizhi Jane Tao
- Department
of Biosciences, Wiess School of Natural Sciences, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Daniel J. Preston
- Department
of Mechanical Engineering, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Choe JK, Kim J, Song H, Bae J, Kim J. A soft, self-sensing tensile valve for perceptive soft robots. Nat Commun 2023; 14:3942. [PMID: 37402707 PMCID: PMC10319868 DOI: 10.1038/s41467-023-39691-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Soft inflatable robots are a promising paradigm for applications that benefit from their inherent safety and adaptability. However, for perception, complex connections of rigid electronics both in hardware and software remain the mainstay. Although recent efforts have created soft analogs of individual rigid components, the integration of sensing and control systems is challenging to achieve without compromising the complete softness, form factor, or capabilities. Here, we report a soft self-sensing tensile valve that integrates the functional capabilities of sensors and control valves to directly transform applied tensile strain into distinctive steady-state output pressure states using only a single, constant pressure source. By harnessing a unique mechanism, "helical pinching", we derive physical sharing of both sensing and control valve structures, achieving all-in-one integration in a compact form factor. We demonstrate programmability and applicability of our platform, illustrating a pathway towards fully soft, electronics-free, untethered, and autonomous robotic systems.
Collapse
Affiliation(s)
- Jun Kyu Choe
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Junsoo Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeonseo Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Joonbum Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea.
| |
Collapse
|
14
|
Ahrar S, Raje M, Lee IC, Hui EE. Pneumatic computers for embedded control of microfluidics. SCIENCE ADVANCES 2023; 9:eadg0201. [PMID: 37267360 PMCID: PMC10413662 DOI: 10.1126/sciadv.adg0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Alternative computing approaches that interface readily with physical systems are well suited for embedded control of those systems. We demonstrate finite state machines implemented as pneumatic circuits of microfluidic valves and use these controllers to direct microfluidic liquid handling procedures on the same chip. These monolithic integrated systems require only power to be supplied externally, in the form of a vacuum source. User input can be provided directly to the chip by covering pneumatic ports with a finger. State machines with up to four bits of state memory are demonstrated, and next-state combinational logic can be fully reprogrammed by changing the hole-punch pattern on a membrane in the chip. These pneumatic computers demonstrate a framework for the embedded control of physical systems and open a path to stand-alone lab-on-a-chip devices capable of highly complex functionality.
Collapse
Affiliation(s)
- Siavash Ahrar
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, California State University, Long Beach, CA, USA
| | - Manasi Raje
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Irene C Lee
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Yan Z, Liu Y, Xiong J, Wang B, Dai L, Gao M, Pan T, Yang W, Lin Y. Hierarchical Serpentine-Helix Combination for 3D Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210238. [PMID: 36896499 DOI: 10.1002/adma.202210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Indexed: 06/09/2023]
Abstract
3D stretchable electronics attract growing interest due to their new and more complex functionalities compared to 1D or 2D counterparts. Among all 3D configuration designs, a 3D helical structure is commonly used as it can be designed to achieve outstanding stretching ratios as well as highly robust mechanical performance. However, the stretching ratio that mainly focuses on the axis direction hinders its applications. Inspired by hierarchies in a tendon, a novel structural design of hierarchical 3D serpentine-helix combination is proposed. The structural design constructed by a sequence with repeating small units winding in a helical manner around the axis can enable large mechanical forces transferred down to a smaller scale with the dissipation of potentially damaging stresses by microscale buckling, thereby endowing the electronic components made from high-performance but hard-to-stretch materials with large stretchability (≥200%) in x-, y-, or z-axis direction, high structural stability, and extraordinary electromechanical performance. Two applications including a wireless charging patch and an epidermal electronic system are demonstrated. The epidermal electronic system made of several hierarchical 3D serpentine-helix combinations allows for high-fidelity monitoring of electrophysiological signals, galvanic skin response, and finger-movement-induced electrical signals, which can achieve good tactile pattern recognition when combined with an artificial neural network.
Collapse
Affiliation(s)
- Zhuocheng Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yuting Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Jian Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Bin Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Lingliang Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
16
|
Zhang Z, Long Y, Chen G, Wu Q, Wang H, Jiang H. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. SCIENCE ADVANCES 2023; 9:eadg1203. [PMID: 37043577 PMCID: PMC10096572 DOI: 10.1126/sciadv.adg1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Soft structures and actuation allow robots, conventionally consisting of rigid components, to perform more compliant, adaptive interactions similar to living creatures. Although numerous functions of these types of actuators have been demonstrated in the literature, their hyperelastic designs generally suffer from limited workspaces and load-carrying capabilities primarily due to their structural stretchability factor. Here, we describe a series of pneumatic actuators based on soft but less stretchable fabric that can simultaneously perform tunable workspace and bear a high payload. The motion mode of the actuator is programmable, combinable, and predictable and is informed by rapid response to low input pressure. A robotic gripper using three fabric actuators is also presented. The gripper demonstrates a grasping force of over 150 N and a grasping range from 70 to 350 millimeters. The design concept and comprehensive guidelines presented would provide design and analysis foundations for applying less stretchable yet soft materials in soft robots to further enhance their practicality.
Collapse
Affiliation(s)
- Zhuang Zhang
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yongzhou Long
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genliang Chen
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qichen Wu
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Wang
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
17
|
Abstract
Three-terminal thermal analogies to electrical transistors have been proposed for use in thermal amplification, thermal switching, or thermal logic, but have not yet been demonstrated experimentally. Here, we design and fabricate a three-terminal magnetic thermal transistor in which the gate temperature controls the source-drain heat flow by toggling the source-drain thermal conductance from ON to OFF. The centimeter-scale thermal transistor uses gate-temperature dependent magnetic forces to actuate motion of a thermally conducting shuttle, providing thermal contact between source and drain in the ON state while breaking contact in the OFF state. We measure source-drain thermal switch ratios of 109 ± 44 in high vacuum with gate switching temperatures near 25 °C. Thermal measurements show that small heat flows into the gate can be used to drive larger heat flows from source to drain, and that the switching is reversible over >150 cycles. Proof-of-concept thermal circuit demonstrations show that magnetic thermal transistors can enable passive or active heat flow routing or can be combined to create Boolean thermal logic gates. This work will allow thermal researchers to explore the behavior of nonlinear thermal circuits using three-terminal transistors and will motivate further research developing thermal transistors for advanced thermal control.
Collapse
|
18
|
Schara M, Zeng M, Jumet B, Preston DJ. A low-cost wearable device for portable sequential compression therapy. Front Robot AI 2022; 9:1012862. [DOI: 10.3389/frobt.2022.1012862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, cardiovascular diseases resulted in 25% of unnatural deaths in the United States. Treatment with long-term administration of medication can adversely affect other organs, and surgeries such as coronary artery grafts are risky. Meanwhile, sequential compression therapy (SCT) offers a low-risk alternative, but is currently expensive and unwieldy, and often requires the patient to be immobilized during administration. Here, we present a low-cost wearable device to administer SCT, constructed using a stacked lamination fabrication approach. Expanding on concepts from the field of soft robotics, textile sheets are thermally bonded to form pneumatic actuators, which are controlled by an inconspicuous and tetherless electronic onboard supply of pressurized air. Our open-source, low-profile, and lightweight (140 g) device costs $62, less than one-third the cost the least expensive alternative and one-half the weight of lightest alternative approved by the US Food and Drug Administration (FDA), presenting the opportunity to more effectively provide SCT to socioeconomically disadvantaged individuals. Furthermore, our textile-stacking method, inspired by conventional fabrication methods from the apparel industry, along with the lightweight fabrics used, allows the device to be worn more comfortably than other SCT devices. By reducing physical and financial encumbrances, the device presented in this work may better enable patients to treat cardiovascular diseases and aid in recovery from cardiac surgeries.
Collapse
|
19
|
Abstract
In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials-in this case, by leveraging membrane inversion and tube kinking-two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user's fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design.
Collapse
|