1
|
Nova IC, Craig JM, Mazumder A, Laszlo AH, Derrington IM, Noakes MT, Brinkerhoff H, Yang S, Vahedian-Movahed H, Li L, Zhang Y, Bowman JL, Huang JR, Mount JW, Ebright RH, Gundlach JH. Nanopore tweezers show fractional-nucleotide translocation in sequence-dependent pausing by RNA polymerase. Proc Natl Acad Sci U S A 2024; 121:e2321017121. [PMID: 38990947 PMCID: PMC11260103 DOI: 10.1073/pnas.2321017121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 07/13/2024] Open
Abstract
RNA polymerases (RNAPs) carry out the first step in the central dogma of molecular biology by transcribing DNA into RNA. Despite their importance, much about how RNAPs work remains unclear, in part because the small (3.4 Angstrom) and fast (~40 ms/nt) steps during transcription were difficult to resolve. Here, we used high-resolution nanopore tweezers to observe the motion of single Escherichia coli RNAP molecules as it transcribes DNA ~1,000 times improved temporal resolution, resolving single-nucleotide and fractional-nucleotide steps of individual RNAPs at saturating nucleoside triphosphate concentrations. We analyzed RNAP during processive transcription elongation and sequence-dependent pausing at the yrbL elemental pause sequence. Each time RNAP encounters the yrbL elemental pause sequence, it rapidly interconverts between five translocational states, residing predominantly in a half-translocated state. The kinetics and force-dependence of this half-translocated state indicate it is a functional intermediate between pre- and post-translocated states. Using structural and kinetics data, we show that, in the half-translocated and post-translocated states, sequence-specific protein-DNA interaction occurs between RNAP and a guanine base at the downstream end of the transcription bubble (core recognition element). Kinetic data show that this interaction stabilizes the half-translocated and post-translocated states relative to the pre-translocated state. We develop a kinetic model for RNAP at the yrbL pause and discuss this in the context of key structural features.
Collapse
Affiliation(s)
- Ian C. Nova
- Department of Physics, University of Washington, Seattle, WA98195
| | | | - Abhishek Mazumder
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ08854
| | - Andrew H. Laszlo
- Department of Physics, University of Washington, Seattle, WA98195
| | | | | | | | - Shuya Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ08854
| | | | - Lingting Li
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | | | - Jesse R. Huang
- Department of Physics, University of Washington, Seattle, WA98195
| | | | - Richard H. Ebright
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ08854
| | - Jens H. Gundlach
- Department of Physics, University of Washington, Seattle, WA98195
| |
Collapse
|
2
|
Marx SK, Mickolajczyk KJ, Craig J, Thomas C, Pfeffer A, Abell S, Carrasco J, Franzi M, Huang J, Kim H, Brinkerhoff H, Kapoor T, Gundlach J, Laszlo A. Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. Nucleic Acids Res 2023; 51:9266-9278. [PMID: 37560916 PMCID: PMC10516658 DOI: 10.1093/nar/gkad660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.
Collapse
Affiliation(s)
- Sinduja K Marx
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Akira M Pfeffer
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Michaela C Franzi
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Thomas CA, Craig JM, Hoshika S, Brinkerhoff H, Huang JR, Abell SJ, Kim HC, Franzi MC, Carrasco JD, Kim HJ, Smith DC, Gundlach JH, Benner SA, Laszlo AH. Assessing Readability of an 8-Letter Expanded Deoxyribonucleic Acid Alphabet with Nanopores. J Am Chem Soc 2023; 145:10.1021/jacs.3c00829. [PMID: 37036666 PMCID: PMC11619810 DOI: 10.1021/jacs.3c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Chemists have now synthesized new kinds of DNA that add nucleotides to the four standard nucleotides (guanine, adenine, cytosine, and thymine) found in standard Terran DNA. Such "artificially expanded genetic information systems" are today used in molecular diagnostics; to support directed evolution to create medically useful receptors, ligands, and catalysts; and to explore issues related to the early evolution of life. Further applications are limited by the inability to directly sequence DNA containing nonstandard nucleotides. Nanopore sequencing is well-suited for this purpose, as it does not require enzymatic synthesis, amplification, or nucleotide modification. Here, we take the first steps to realize nanopore sequencing of an 8-letter "hachimoji" expanded DNA alphabet by assessing its nanopore signal range using the MspA (Mycobacterium smegmatis porin A) nanopore. We find that hachimoji DNA exhibits a broader signal range in nanopore sequencing than standard DNA alone and that hachimoji single-base substitutions are distinguishable with high confidence. Because nanopore sequencing relies on a molecular motor to control the motion of DNA, we then assessed the compatibility of the Hel308 motor enzyme with nonstandard nucleotides by tracking the translocation of single Hel308 molecules along hachimoji DNA, monitoring the enzyme kinetics and premature enzyme dissociation from the DNA. We find that Hel308 is compatible with hachimoji DNA but dissociates more frequently when walking over C-glycoside nucleosides, compared to N-glycosides. C-glycocide nucleosides passing a particular site within Hel308 induce a higher likelihood of dissociation. This highlights the need to optimize nanopore sequencing motors to handle different glycosidic bonds. It may also inform designs of future alternative DNA systems that can be sequenced with existing motors and pores.
Collapse
Affiliation(s)
| | - Jonathan M. Craig
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Jesse R. Huang
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J. Abell
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Hwanhee C. Kim
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Michaela C. Franzi
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | | | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, USA
| | - Drew C. Smith
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Jens H. Gundlach
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, USA
| | - Andrew H. Laszlo
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Engineered helicase replaces thermocycler in DNA amplification while retaining desired PCR characteristics. Nat Commun 2022; 13:6312. [PMID: 36274095 PMCID: PMC9588791 DOI: 10.1038/s41467-022-34076-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Polymerase Chain Reaction (PCR) is an essential method in molecular diagnostics and life sciences. PCR requires thermal cycling for heating the DNA for strand separation and cooling it for replication. The process uses a specialized hardware and exposes biomolecules to temperatures above 95 °C. Here, we engineer a PcrA M6 helicase with enhanced speed and processivity to replace the heating step by enzymatic DNA unwinding while retaining desired PCR characteristics. We name this isothermal amplification method SHARP (SSB-Helicase Assisted Rapid PCR) because it uses the engineered helicase and single-stranded DNA binding protein (SSB) in addition to standard PCR reagents. SHARP can generate amplicons with lengths of up to 6000 base pairs. SHARP can produce functional DNA, a plasmid that imparts cells with antibiotic resistance, and can amplify specific fragments from genomic DNA of human cells. We further use SHARP to assess the outcome of CRISPR-Cas9 editing at endogenous genomic sites.
Collapse
|
5
|
Craig JM, Mills M, Kim HC, Huang JR, Abell S, Mount J, Gundlach J, Neuman K, Laszlo A. Nanopore tweezers measurements of RecQ conformational changes reveal the energy landscape of helicase motion. Nucleic Acids Res 2022; 50:10601-10613. [PMID: 36165957 PMCID: PMC9561376 DOI: 10.1093/nar/gkac837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.
Collapse
Affiliation(s)
- Jonathan M Craig
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Maria Mills
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics & Astronomy, University of Missouri, 701 S College Ave, Physics Building Rm 223, Columbia, MO 65211, USA
| | - Hwanhee C Kim
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jesse R Huang
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Sarah J Abell
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jonathan W Mount
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA, USA
| |
Collapse
|
6
|
Marx SK, Mickolajczyk KJ, Craig JM, Thomas CA, Pfeffer AM, Abell SJ, Carrasco JD, Franzi MC, Huang JR, Kim HC, Brinkerhoff HD, Kapoor TM, Gundlach JH, Laszlo AH. Inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.07.511351. [PMID: 36238723 PMCID: PMC9558434 DOI: 10.1101/2022.10.07.511351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The genome of SARS-CoV-2 encodes for a helicase called nsp13 that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds short DNA duplexes. Our data confirm that nsp13 uses the inchworm mechanism to move along the DNA in single-nucleotide steps, translocating at ~1000 nt/s or unwinding at ~100 bp/s. Nanopore tweezers' high spatio-temporal resolution enables observation of the fundamental physical steps taken by nsp13 even as it translocates at speeds in excess of 1000 nucleotides per second enabling detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. Our data reveals that ATPγS interferes with nsp13's action by affecting several different kinetic processes. The dominant mechanism of inhibition differs depending on the application of assisting force. These advances demonstrate that nanopore tweezers are a powerful method for studying viral helicase mechanism and inhibition.
Collapse
Affiliation(s)
- Sinduja K Marx
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA 98195
| | | | - Akira M Pfeffer
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Sarah J Abell
- Department of Physics, University of Washington, Seattle, WA 98195
| | | | | | - Jesse R Huang
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Hwanhee C Kim
- Department of Physics, University of Washington, Seattle, WA 98195
| | | | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, WA 98195
| |
Collapse
|