1
|
Cai Y, Hua Y, Lu Z, Chen J, Chen D, Xia H. Metallacyclobutadienes: Intramolecular Rearrangement from Kinetic to Thermodynamic Isomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403940. [PMID: 39104029 PMCID: PMC11481178 DOI: 10.1002/advs.202403940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Indexed: 08/07/2024]
Abstract
Metallacyclobutadienes (MCBDs) are key intermediates of alkyne metathesis reactions. There are in principle two isomerization pathway from kinetic to thermodynamic MCBDs, intermolecular and intramolecular. However, systems that simultaneously isolate two kinds of MCBD isomers have not been achieved, thus restricting the mechanistic studies of the isomerization. Here the reactivity of a metallapentalyne that contains an M≡C bond within the aromatic ring, with alkynes to afford a series of MCBD-fused metallapentalenes is studied. In some cases, both kinetic and thermodynamic products are isolated in the same system, which has never been observed in previous MCBD reactions. Furthermore, the isomerization of MCBD-fused metallapentalenes is investigated both experimentally and theoretically, indicating that it is an intramolecular process involving a metallatetrahedrane (MTd) intermediate. This research provides experimental evidence demonstrating that one MCBD can undergo intramolecular rearrangement to transform into another.
Collapse
Affiliation(s)
- Yuanting Cai
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Jiangxi Chen
- Department of Materials Science and EngineeringCollege of MaterialsXiamen UniversityXiamen361005China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Haiping Xia
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| |
Collapse
|
2
|
Yang XF, Zhang MX, Liu SH, Hartl F. Metallaaromatic Complexes as Candidates for Future Molecular Materials and Electronic Devices: Recent Advancements. Chem Asian J 2024; 19:e202300860. [PMID: 37997007 DOI: 10.1002/asia.202300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
In recent years, the field of organometallic chemistry has made a great progress and diverse types of metallaaromatics have successively been reported. In those studies, incorporation of ligated osmium centers into metallaaromatic systems played a prominent role. The reviewed literature documents that certain metallaaromatics with unconventional photophysical properties, redox and electronic transport properties and magnetism, have potential to be widely used in diverse practical applications, with selected examples of amino acid and fluoride anion identification, photothermal effects, functional materials, photodynamic therapy (PDT) in biomedicine, single-molecule junction conductors, and electron-transport layer materials (ETLs) in solar cells.
Collapse
Affiliation(s)
- Xiao Fei Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Xing Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, P. R. China
| | - Sheng Hua Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6DX, United Kingdom
| |
Collapse
|
3
|
Lin Z, Cai Y, Zhang Y, Zhang H, Xia H. Heterocyclic Suzuki-Miyaura coupling reaction of metalla-aromatics and mechanistic analysis of site selectivity. Chem Sci 2023; 14:1227-1233. [PMID: 36756314 PMCID: PMC9891379 DOI: 10.1039/d2sc05455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Pd-catalyzed Suzuki-Miyaura cross-coupling is one of the most straightforward and versatile methods for the construction of functionalized arenes and heteroarenes but site-selective cross-coupling of polyhalogenated (hetero)arenes containing identical halogen substituents remains a challenging problem. Herein, we report a new candidate for heterocyclic Suzuki-Miyaura coupling reaction. This candidate has been applied in organometallic systems by combining classical aryl boronic acid reagents with non-classical heteroarenes. Experimental and computational studies of the mechanism of the reactions were performed, with an emphasis on the identity of the reactive species in the oxidative addition step and the nature of the precise site selectivity. The influence of both the aromaticity of the metalla-aromatic substrates and the steric and electronic properties of the halogenated sites are studied in detail.
Collapse
Affiliation(s)
- Zuzhang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yapeng Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yaowei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
4
|
Luo M, Chen D, Li Q, Xia H. Unique Properties and Emerging Applications of Carbolong Metallaaromatics. Acc Chem Res 2023; 56:924-937. [PMID: 36718118 DOI: 10.1021/acs.accounts.2c00750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ConspectusAromatic compounds are important in synthetic chemistry, biomedicines, and materials science. As a special type of aromatic complex, transition-metal-based metallaaromatics contain at least one transition metal in an aromatic framework. The chemistry of metallaaromatics has seen much progress in computational studies and synthetic methods, but their properties and applications are still emerging. In recent years, we have disclosed a series of metal-centered conjugated polycyclic metallacycles in which a carbon chain is chelated to a metal center through at least three metal-carbon bonds. These are termed carbolong complexes and exhibit good stability to water, oxygen, light, and heat on account of their polydentate chelation and aromaticity, making them easy to handle. Carbolong complexes are not only special π-conjugated aromatics but also organometallics; therefore, they have the properties of both species. In this Account, we showcase the recent advances in their applications based on their different properties.First, carbolong complexes are a special kind of π-conjugated aromatic, with the ability to transmit electrons, allowing them to function as single-molecule conductors and candidates for electron transporting layer materials (ETLs) in solar cells. A series of carbolong complexes have been proved to be useful as achievable ETLs which enhance device performance in both organic solar cells and perovskite solar cells.Second, due to the involvement of d orbitals in the conjugation, carbolong complexes normally exhibit strong and broad absorption, even in some cases extending to the near-infrared region (NIR). The absorbed optical energy can be converted into light, heat, and ultrasound; consequently, carbolong compounds can be used as core moieties in smart materials. For example, 7C carbolong complexes were found to exhibit aggregation-enhanced near-infrared emission (AIEE). Some 12C carbolong complexes have been designed into the core moieties of NIR-responsive polymers, such as cylindrical NIR-responsive materials, self-healing materials, and shape memory materials. In contrast to the stereotypically toxic osmium compounds such as the highly toxic OsO4, some osmium carbolong complexes exhibit low cell cytotoxicity and good biocompatibility; consequently, they also have potential applications in the biomedical area. For example, benefiting from broad absorption in the NIR, 9C and 12C carbolong complexes have been used in photoacoustic imaging and photothermal therapy, respectively. In addition, photodynamic therapeutic applications which take advantage of a carbolong peroxo complex are discussed.Third, as special transition-metal complexes chelated by carbon-based ligands, a carbolong peroxo complex has displayed catalytic activity in the dehydrogenation of alcohols and a bimetallic carbolong complex has been used to catalyze difunctionalization reactions of unactivated alkenes.Overall, aromatic carbolong complexes have been applied to photovoltaics, smart materials, phototherapy, and catalytic reactions. Moving forward, we hope that this Account will shed light on future studies and theoretical research and encourage more discoveries of the properties of other metallaaromatics.
Collapse
Affiliation(s)
- Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Fei Yang X, Zhang MX, Bin Fu D, Wang Y, Yin J, Hua Liu S. Pentacyclic and Hexacyclic Osmaarynes and Their Derivatives. Chemistry 2022; 28:e202202334. [PMID: 36198664 DOI: 10.1002/chem.202202334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/07/2022]
Abstract
Although osmabenzyne, osmanaphthalyne, osmaphenanthryne, and osmaanthracyne have been previously reported, the synthesis of polycyclic osmaarynes is still a challenge. Herein, we report the successful synthesis of the first pentacyclic osmaarynes (pyreno[b]osmabenzynes 1 a and 2 a) and hexacyclic osmaaryne (peryleno[b]osmabenzyne 3 a). Nucleophilic reaction of osmaarynes was used to obtain the corresponding pyreno[b]osmium complexes (1 and 2) and peryleno[b] osmium complex (3), which exhibited near-infrared luminescence and aggregation-induced emission (AIE) properties. Complexes 2 and 3 are resistant to photodegradation, and complex 2 has better photothermal conversion properties than 3.
Collapse
Affiliation(s)
- Xiao Fei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Ming-Xing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
- Hubei Key Laboratory of Purification and Application of, Plant Anti-cancer Active Ingredients, College of Chemistry and Life Science, Hubei University of Education, 430205, Wuhan, P. R. China
| | - De Bin Fu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Yang Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 430079, Wuhan, P. R. China
| |
Collapse
|
6
|
Sha Y, Zhou Z, Hu Y, Zhang H, Li X. Heterobimetallic polymers with pendant metallocenes: Correlating metallopolymer structures with properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Cui F, Li Q, Gao L, Ruan K, Ma K, Chen S, Lu Z, Fei J, Lin Y, Xia H. Condensed Osmaquinolines with NIR‐II Absorption Synthesized by Aryl C−H Annulation and Aromatization. Angew Chem Int Ed Engl 2022; 61:e202211734. [DOI: 10.1002/anie.202211734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fei‐Hu Cui
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qian Li
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le‐Han Gao
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Kaidong Ruan
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Kexin Ma
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Siyuan Chen
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Jiawei Fei
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu‐Mei Lin
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|