1
|
Xie B, Xu S, Sivasankar S. Outside-in engineering of cadherin endocytosis using a conformation strengthening antibody. Nat Commun 2025; 16:1157. [PMID: 39881179 PMCID: PMC11779849 DOI: 10.1038/s41467-025-56478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
P-cadherin, a crucial cell-cell adhesion protein which is overexpressed in numerous malignant cancers, is a popular target for drug delivery antibodies. However, molecular guidelines for engineering antibodies that can be internalized upon binding to P-cadherin are unknown. Here, we use a combination of biophysical, biochemical, and cell biological methods to demonstrate that trapping the P-cadherin extracellular region in an X-dimer adhesive conformation triggers cadherin endocytosis via an outside-in signaling mechanism. We show that the anti-cancer drug delivery monoclonal antibody CQY684, traps P-cadherin in an X-dimer conformation and strengthens this adhesive structure. Formation of stable X-dimers results in the phosphorylation of p120-catenin, a suppressor of cadherin endocytosis. This triggers the dissociation of p120-catenin from the X-dimer cytoplasmic region, which increases P-cadherin turnover and targets the cadherin-antibody complex to the lysosome. Our results establish an outside-in signaling mechanism that provides fundamental insights into how cells regulate adhesion and that can be exploited by anti-cadherin antibodies for intracellular drug delivery.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA, USA
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, CA, USA.
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody-mediated binding stabilization. Structure 2024; 32:217-227.e3. [PMID: 38052206 PMCID: PMC10872345 DOI: 10.1016/j.str.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8-mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site-directed mutagenesis, and single-molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
Affiliation(s)
- Bin Xie
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Leslayann Schecterson
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Barry M Gumbiner
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA
| | - Sanjeevi Sivasankar
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
4
|
Shafraz O, Davis CMO, Sivasankar S. Light-activated BioID - an optically activated proximity labeling system to study protein-protein interactions. J Cell Sci 2023; 136:jcs261430. [PMID: 37756605 PMCID: PMC10656424 DOI: 10.1242/jcs.261430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Proximity labeling with genetically encoded enzymes is widely used to study protein-protein interactions in cells. However, the accuracy of proximity labeling is limited by a lack of control over the enzymatic labeling process. Here, we present a light-activated proximity labeling technology for mapping protein-protein interactions at the cell membrane with high accuracy and precision. Our technology, called light-activated BioID (LAB), fuses the two halves of the split-TurboID proximity labeling enzyme to the photodimeric proteins CRY2 and CIB1. We demonstrate, in multiple cell lines, that upon illumination with blue light, CRY2 and CIB1 dimerize, reconstitute split-TurboID and initiate biotinylation. Turning off the light leads to the dissociation of CRY2 and CIB1 and halts biotinylation. We benchmark LAB against the widely used TurboID proximity labeling method by measuring the proteome of E-cadherin, an essential cell-cell adhesion protein. We show that LAB can map E-cadherin-binding partners with higher accuracy and significantly fewer false positives than TurboID.
Collapse
Affiliation(s)
- Omer Shafraz
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
6
|
Sivasankar S, Xie B. Engineering the Interactions of Classical Cadherin Cell-Cell Adhesion Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:343-349. [PMID: 37459190 PMCID: PMC10361579 DOI: 10.4049/jimmunol.2300098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 07/20/2023]
Abstract
Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
7
|
Xie B, Xu S, Schecterson L, Gumbiner BM, Sivasankar S. Strengthening E-cadherin adhesion via antibody mediated binding stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547716. [PMID: 37461464 PMCID: PMC10350017 DOI: 10.1101/2023.07.04.547716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8 mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site directed mutagenesis and single molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies.
Collapse
|
8
|
Maker A, Bolejack M, Schecterson L, Hammerson B, Abendroth J, Edwards TE, Staker B, Myler PJ, Gumbiner BM. Regulation of multiple dimeric states of E-cadherin by adhesion activating antibodies revealed through Cryo-EM and X-ray crystallography. PNAS NEXUS 2022; 1:pgac163. [PMID: 36157596 PMCID: PMC9491697 DOI: 10.1093/pnasnexus/pgac163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 01/29/2023]
Abstract
E-cadherin adhesion is regulated at the cell surface, a process that can be replicated by activating antibodies. We use cryo-electron microscopy (EM) and X-ray crystallography to examine functional states of the cadherin adhesive dimer. This dimer is mediated by N-terminal beta strand-swapping involving Trp2, and forms via a different transient X-dimer intermediate. X-dimers are observed in cryo-EM along with monomers and strand-swap dimers, indicating that X-dimers form stable interactions. A novel EC4-mediated dimer was also observed. Activating Fab binding caused no gross structural changes in E-cadherin monomers, but can facilitate strand swapping. Moreover, activating Fab binding is incompatible with the formation of the X-dimer. Both cryo-EM and X-ray crystallography reveal a distinctive twisted strand-swap dimer conformation caused by an outward shift in the N-terminal beta strand that may represent a strengthened state. Thus, regulation of adhesion involves changes in cadherin dimer configurations.
Collapse
Affiliation(s)
- Allison Maker
- Department of Biochemistry, University of Washington, USA,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Madison Bolejack
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, USA
| | - Brad Hammerson
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA
| | - Jan Abendroth
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Thomas E Edwards
- UCB Pharma, Bainbridge, WA, USA,Seattle Structural Genomics Center for Infectious Disease, USA
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, USA,Center for Global Infectious Disease Research, Seattle Children's Research Institute, USA,Department of Pediatrics, University of Washington, USA,Department of Biomedical Informatics and Medical Education, University of Washington, USA
| | | |
Collapse
|