1
|
Deng Y, Pan D, Jin Y. Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations. Nat Commun 2024; 15:7072. [PMID: 39152106 PMCID: PMC11329727 DOI: 10.1038/s41467-024-51319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Jamming is an athermal transition between flowing and rigid states in amorphous systems such as granular matter, colloidal suspensions, complex fluids and cells. The jamming transition seems to display mixed aspects of a first-order transition, evidenced by a discontinuity in the coordination number, and a second-order transition, indicated by power-law scalings and diverging lengths. Here we demonstrate that jamming is a first-order transition with quenched disorder in cyclically sheared systems with quasistatic deformations, in two and three dimensions. Based on scaling analyses, we show that fluctuations of the jamming density in finite-sized systems have important consequences on the finite-size effects of various quantities, resulting in a square relationship between disconnected and connected susceptibilities, a key signature of the first-order transition with quenched disorder. This study puts the jamming transition into the category of a broad class of transitions in disordered systems where sample-to-sample fluctuations dominate over thermal fluctuations, suggesting that the nature and behavior of the jamming transition might be better understood within the developed theoretical framework of the athermally driven random-field Ising model.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deng Pan
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
2
|
Shang J, Wang Y, Pan D, Jin Y, Zhang J. The yielding of granular matter is marginally stable and critical. Proc Natl Acad Sci U S A 2024; 121:e2402843121. [PMID: 39116130 PMCID: PMC11331087 DOI: 10.1073/pnas.2402843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Amorphous materials undergo a transition from liquid-like to solid-like states through processes like rapid quenching or densification. Under external loads, they exhibit yielding, with minimal structural changes compared to crystals. However, these universal characteristics are rarely explored comprehensively in a single granular experiment due to the added complexity of inherent friction. The discernible differences between static configurations before and after yielding are largely unaddressed, and a comprehensive examination from both statistical physics and mechanical perspectives is lacking. To address these gaps, we conducted experiments using photoelastic disks, simultaneously tracking particles and measuring forces. Our findings reveal that the yielding transition demonstrates critical behavior from a statistical physics standpoint and marginal stability from a mechanical perspective, akin to the isotropic jamming transition. This criticality differs significantly from spinodal criticality in frictionless amorphous solids, highlighting unique characteristics of granular yielding. Furthermore, our analysis confirms the marginal stability of granular yielding by assessing the contact number and evaluating the balance between weak forces and small gaps. These factors serve as structural indicators for configurations before and after yielding. Our results not only contribute to advancing our understanding of the fundamental physics of granular materials but also bear significant implications for practical applications in various fields.
Collapse
Affiliation(s)
- Jin Shang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yinqiao Wang
- Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo153-8505, Japan
| | - Deng Pan
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325000, China
| | - Jie Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
3
|
Wilken S, Guo AZ, Levine D, Chaikin PM. Dynamical Approach to the Jamming Problem. PHYSICAL REVIEW LETTERS 2023; 131:238202. [PMID: 38134769 DOI: 10.1103/physrevlett.131.238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/12/2023] [Indexed: 12/24/2023]
Abstract
A simple dynamical model, biased random organization (BRO), appears to produce configurations known as random close packing (RCP) as BRO's densest critical point in dimension d=3. We conjecture that BRO likewise produces RCP in any dimension; if so, then RCP does not exist in d=1-2 (where BRO dynamics lead to crystalline order). In d=3-5, BRO produces isostatic configurations and previously estimated RCP volume fractions 0.64, 0.46, and 0.30, respectively. For all investigated dimensions (d=2-5), we find that BRO belongs to the Manna universality class of dynamical phase transitions by measuring critical exponents associated with the steady-state activity and the long-range density fluctuations. Additionally, BRO's distribution of near contacts (gaps) displays behavior consistent with the infinite-dimensional theoretical treatment of RCP when d≥4. The association of BRO's densest critical configurations with random close packing implies that RCP's upper-critical dimension is consistent with the Manna class d_{uc}=4.
Collapse
Affiliation(s)
- Sam Wilken
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Ashley Z Guo
- Department of Chemical and Biochemical Engineering, Rutgers University-New Brunswick, Piscataway, New Jersey 08854, USA
| | - Dov Levine
- Department of Physics, Technion-IIT, Haifa 32000, Israel
| | - Paul M Chaikin
- Department of Chemical and Biochemical Engineering, Rutgers University-New Brunswick, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Liao Q, Berthier L, Zhou HJ, Xu N. Dynamic Gardner cross-over in a simple glass. Proc Natl Acad Sci U S A 2023; 120:e2218218120. [PMID: 37339213 PMCID: PMC10293817 DOI: 10.1073/pnas.2218218120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/21/2023] [Indexed: 06/22/2023] Open
Abstract
The criticality of the jamming transition responsible for amorphous solidification has been theoretically linked to the marginal stability of a thermodynamic Gardner phase. While the critical exponents of jamming appear independent of the preparation history, the pertinence of Gardner physics far from equilibrium is an open question. To fill this gap, we numerically study the nonequilibrium dynamics of hard disks compressed toward the jamming transition using a broad variety of protocols. We show that dynamic signatures of Gardner physics can be disentangled from the aging relaxation dynamics. We thus define a generic dynamic Gardner cross-over regardless of the history. Our results show that the jamming transition is always accessed by exploring increasingly complex landscape, resulting in anomalous microscopic relaxation dynamics that remains to be understood theoretically.
Collapse
Affiliation(s)
- Qinyi Liao
- Chinese Academic of Sciences Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, University of Montpellier, CNRS, Montpellier34095, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Hai-Jun Zhou
- Chinese Academic of Sciences Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- MinJiang Collaborative Center for Theoretical Physics, MinJiang University, Fuzhou350108, China
| | - Ning Xu
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academic of Sciences Key Laboratory of Microscale Magnetic Resonance, Hefei230026, People’s Republic of China
| |
Collapse
|
5
|
Pan D, Meng F, Jin Y. Shear hardening in frictionless amorphous solids near the jamming transition. PNAS NEXUS 2023; 2:pgad047. [PMID: 36896136 PMCID: PMC9991460 DOI: 10.1093/pnasnexus/pgad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
The jamming transition, generally manifested by a rapid increase of rigidity under compression (i.e. compression hardening), is ubiquitous in amorphous materials. Here we study shear hardening in deeply annealed frictionless packings generated by numerical simulations, reporting critical scalings absent in compression hardening. We demonstrate that hardening is a natural consequence of shear-induced memory destruction. Based on an elasticity theory, we reveal two independent microscopic origins of shear hardening: (i) the increase of the interaction bond number and (ii) the emergence of anisotropy and long-range correlations in the orientations of bonds-the latter highlights the essential difference between compression and shear hardening. Through the establishment of physical laws specific to anisotropy, our work completes the criticality and universality of jamming transition, and the elasticity theory of amorphous solids.
Collapse
Affiliation(s)
- Deng Pan
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yuliang Jin
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
6
|
Artiaco C, Díaz Hernández Rojas R, Parisi G, Ricci-Tersenghi F. Hard-sphere jamming through the lens of linear optimization. Phys Rev E 2022; 106:055310. [PMID: 36559351 DOI: 10.1103/physreve.106.055310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
The jamming transition is ubiquitous. It is present in granular matter, foams, colloids, structural glasses, and many other systems. Yet, it defines a critical point whose properties still need to be fully understood. Recently, a major breakthrough came about when the replica formalism was extended to build a mean-field theory that provides an exact description of the jamming transition of spherical particles in the infinite-dimensional limit. While such theory explains the jamming critical behavior of both soft and hard spheres, investigating the transition in finite-dimensional systems poses very difficult and different problems, in particular from the numerical point of view. Soft particles are modeled by continuous potentials; thus, their jamming point can be reached through efficient energy minimization algorithms. In contrast, the latter methods are inapplicable to hard-sphere (HS) systems since the interaction energy among the particles is always zero by construction. To overcome these difficulties, here we recast the jamming of hard spheres as a constrained optimization problem and introduce the CALiPPSO algorithm, capable of readily producing jammed HS packings without including any effective potential. This algorithm brings a HS configuration of arbitrary dimensions to its jamming point by solving a chain of linear optimization problems. We show that there is a strict correspondence between the force balance conditions of jammed packings and the properties of the optimal solutions of CALiPPSO, whence we prove analytically that our packings are always isostatic and in mechanical equilibrium. Furthermore, using extensive numerical simulations, we show that our algorithm is able to probe the complex structure of the free-energy landscape, finding qualitative agreement with mean-field predictions. We also characterize the algorithmic complexity of CALiPPSO and provide an open-source implementation of it.
Collapse
Affiliation(s)
- Claudia Artiaco
- Department of Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | | | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Xiao H, Liu AJ, Durian DJ. Probing Gardner Physics in an Active Quasithermal Pressure-Controlled Granular System of Noncircular Particles. PHYSICAL REVIEW LETTERS 2022; 128:248001. [PMID: 35776474 DOI: 10.1103/physrevlett.128.248001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
To search for experimental signals of the Gardner crossover, an active quasithermal granular glass is constructed using a monolayer of air-fluidized star-shaped particles. The pressure of the system is controlled by adjusting the tension exerted on an enclosing boundary. Velocity distributions of the internal particles and the scaling of the pressure, density, effective temperature, and relaxation time are examined, demonstrating that the system has key features of a thermal system. Using a pressure-based quenching protocol that brings the system into deeper glassy states, signals of the Gardner crossover are detected via cage size and separation order parameters for both particle positions and orientations, offering experimental evidence of Gardner physics for a system of anisotropic quasithermal particles in a low spatial dimension.
Collapse
Affiliation(s)
- Hongyi Xiao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia 19104, Pennsylvania, USA
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia 19104, Pennsylvania, USA
| | - Douglas J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia 19104, Pennsylvania, USA
| |
Collapse
|
8
|
Pan D, Ji T, Baggioli M, Li L, Jin Y. Nonlinear elasticity, yielding, and entropy in amorphous solids. SCIENCE ADVANCES 2022; 8:eabm8028. [PMID: 35648846 PMCID: PMC9159571 DOI: 10.1126/sciadv.abm8028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The holographic duality has proven successful in linking seemingly unrelated problems in physics. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, including strong similarities between the rheology of amorphous solids, effective field theories for elasticity, and the physics of black holes. However, direct comparisons between theoretical predictions and experimental/simulation observations remain limited. Here, we study the effects of nonlinear elasticity on the mechanical and thermodynamic properties of amorphous materials responding to shear, using effective field and gravitational theories. The predicted correlations among the nonlinear elastic exponent, the yielding strain/stress, and the entropy change due to shear are supported qualitatively by simulations of granular matter models. Our approach opens a path toward understanding the complex mechanical responses of amorphous solids, such as mixed effects of shear softening and shear hardening, and offers the possibility to study the rheology of solid states and black holes in a unified framework.
Collapse
Affiliation(s)
- Deng Pan
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Teng Ji
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matteo Baggioli
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Li Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuliang Jin
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|