1
|
Yang Z, Li B, Bu R, Wang Z, Xin Z, Li Z, Zhang L, Wang W. A highly efficient method for genomic deletion across diverse lengths in thermophilic Parageobacillus thermoglucosidasius. Synth Syst Biotechnol 2024; 9:658-666. [PMID: 38817825 PMCID: PMC11137367 DOI: 10.1016/j.synbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Parageobacillus thermoglucosidasius is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in P. thermoglucosidasius. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool-through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy-we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of P. thermoglucosidasius for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Povolotsky TL, Levy Barazany H, Shacham Y, Kolodkin-Gal I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol Adv 2024; 75:108414. [PMID: 39019123 DOI: 10.1016/j.biotechadv.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In their natural habitats, organisms encounter numerous external stimuli and must be able to sense and adapt to those stimuli to survive. Unlike mutations, epigenetic changes do not alter the underlying DNA sequence. Instead, they create modifications that promote or silence gene expression. Bacillus subtilis has long been a model organism in studying genetics and development. It is beneficial for numerous biotechnological applications where it is included as a probiotic, in fermentation, or in bio-concrete design. This bacterium has also emerged recently as a model organism for studying bacterial epigenetic adaptation. In this review, we examine the evolving knowledge of epigenetic regulation (restriction-modification systems (RM), orphan methyltransferases, and chromosome condensation) in B. subtilis and related bacteria, and utilize it as a case study to test their potential roles and future applications in genetic engineering and microbial biotechnology. Finally, we suggest how the implementation of these fundamental findings promotes the design of synthetic epigenetic memory circuits and their future applications in agriculture, medicine, and biotechnology.
Collapse
Affiliation(s)
- Tatyana L Povolotsky
- Institute for Chemistry and Biochemistry, Physical and Theoretical Chemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Hilit Levy Barazany
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Yosi Shacham
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel.
| |
Collapse
|
3
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Brödel AK, Charpenay LH, Galtier M, Fuche FJ, Terrasse R, Poquet C, Havránek J, Pignotti S, Krawczyk A, Arraou M, Prevot G, Spadoni D, Yarnall MTN, Hessel EM, Fernandez-Rodriguez J, Duportet X, Bikard D. In situ targeted base editing of bacteria in the mouse gut. Nature 2024; 632:877-884. [PMID: 38987595 PMCID: PMC11338833 DOI: 10.1038/s41586-024-07681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Microbiome research is now demonstrating a growing number of bacterial strains and genes that affect our health1. Although CRISPR-derived tools have shown great success in editing disease-driving genes in human cells2, we currently lack the tools to achieve comparable success for bacterial targets in situ. Here we engineer a phage-derived particle to deliver a base editor and modify Escherichia coli colonizing the mouse gut. Editing of a β-lactamase gene in a model E. coli strain resulted in a median editing efficiency of 93% of the target bacterial population with a single dose. Edited bacteria were stably maintained in the mouse gut for at least 42 days following treatment. This was achieved using a non-replicative DNA vector, preventing maintenance and dissemination of the payload. We then leveraged this approach to edit several genes of therapeutic relevance in E. coli and Klebsiella pneumoniae strains in vitro and demonstrate in situ editing of a gene involved in the production of curli in a pathogenic E. coli strain. Our work demonstrates the feasibility of modifying bacteria directly in the gut, offering a new avenue to investigate the function of bacterial genes and opening the door to the design of new microbiome-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Bikard
- Eligo Bioscience, Paris, France.
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France.
| |
Collapse
|
5
|
Xie Z, McAuliffe O, Jin YS, Miller MJ. Genomic Modifications of Lactic Acid Bacteria and Their Applications in Dairy Fermentation. J Dairy Sci 2024:S0022-0302(24)00981-0. [PMID: 38969005 DOI: 10.3168/jds.2024-24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
Lactic Acid Bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. LAB are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)- Cas (CRISPR-associated protein) based genome engineering. Lastly, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.
Collapse
Affiliation(s)
- Zifan Xie
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Yong-Su Jin
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael J Miller
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Zheng L, Shen J, Chen R, Hu Y, Zhao W, Leung ELH, Dai L. Genome engineering of the human gut microbiome. J Genet Genomics 2024; 51:479-491. [PMID: 38218395 DOI: 10.1016/j.jgg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The human gut microbiome, a complex ecosystem, significantly influences host health, impacting crucial aspects such as metabolism and immunity. To enhance our comprehension and control of the molecular mechanisms orchestrating the intricate interplay between gut commensal bacteria and human health, the exploration of genome engineering for gut microbes is a promising frontier. Nevertheless, the complexities and diversities inherent in the gut microbiome pose substantial challenges to the development of effective genome engineering tools for human gut microbes. In this comprehensive review, we provide an overview of the current progress and challenges in genome engineering of human gut commensal bacteria, whether executed in vitro or in situ. A specific focus is directed towards the advancements and prospects in cargo DNA delivery and high-throughput techniques. Additionally, we elucidate the immense potential of genome engineering methods to enhance our understanding of the human gut microbiome and engineer the microorganisms to enhance human health.
Collapse
Affiliation(s)
- Linggang Zheng
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruiyue Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau 999078, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Han X, Chang L, Chen H, Zhao J, Tian F, Ross RP, Stanton C, van Sinderen D, Chen W, Yang B. Harnessing the endogenous Type I-C CRISPR-Cas system for genome editing in Bifidobacterium breve. Appl Environ Microbiol 2024; 90:e0207423. [PMID: 38319094 PMCID: PMC10952402 DOI: 10.1128/aem.02074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Bifidobacterium breve, one of the main bifidobacterial species colonizing the human gastrointestinal tract in early life, has received extensive attention for its purported beneficial effects on human health. However, exploration of the mode of action of such beneficial effects exerted by B. breve is cumbersome due to the lack of effective genetic tools, which limits its synthetic biology application. The widespread presence of CRISPR-Cas systems in the B. breve genome makes endogenous CRISPR-based gene editing toolkits a promising tool. This study revealed that Type I-C CRISPR-Cas systems in B. breve can be divided into two groups based on the amino acid sequences encoded by cas gene clusters. Deletion of the gene coding uracil phosphoribosyl-transferase (upp) was achieved in five B. breve strains from both groups using this system. In addition, translational termination of uracil phosphoribosyl-transferase was successfully achieved in B. breve FJSWX38M7 by single-base substitution of the upp gene and insertion of three stop codons. The gene encoding linoleic acid isomerase (bbi) in B. breve, being a characteristic trait, was deleted after plasmid curing, which rendered it unable to convert linoleic acid into conjugated linoleic acid, demonstrating the feasibility of successive editing. This study expands the toolkit for gene manipulation in B. breve and provides a new approach toward functional genome editing and analysis of B. breve strains.IMPORTANCEThe lack of effective genetic tools for Bifidobacterium breve is an obstacle to studying the molecular mechanisms of its health-promoting effects, hindering the development of next-generation probiotics. Here, we introduce a gene editing method based on the endogenous CRISPR-Cas system, which can achieve gene deletion, single-base substitution, gene insertion, and successive gene editing in B. breve. This study will facilitate discovery of functional genes and elucidation of molecular mechanisms of B. breve pertaining to health-associated benefits.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Dal Bello F, Bocquet L, Bru A, Laulund S, Machielsen R, Raneri M, Sewalt V, van Peij N, Ville P, Volonté F, White Y, Rusek J. New Genomic Techniques applied to food cultures: a powerful contribution to innovative, safe, and sustainable food products. FEMS Microbiol Lett 2024; 371:fnae010. [PMID: 38323486 PMCID: PMC10890814 DOI: 10.1093/femsle/fnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024] Open
Abstract
Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers. Microorganisms derived from NGTs have the potentials of becoming an important contribution to achieve the ambitious targets set by the European 'Green Deal' and 'Farm to Fork' policies. To encourage the development of NGT-derived microorganisms, the current EU regulatory framework should be adapted. These technologies allow the introduction of a precise, minimal DNA modification in microbial genomes resulting in optimized products carrying features that could also be achieved by spontaneous natural genetic evolution. The possibility to use NGTs as a tool to improve food safety, sustainability, and quality is the bottleneck in food culture developments, as it currently relies on lengthy natural evolution strategies or on untargeted random mutagenesis.
Collapse
Affiliation(s)
| | | | - Audrey Bru
- Lallemand SAS, 19 rue des Briquetiers, 31700 Blagnac, France
| | - Svend Laulund
- Novonesis, Gammel Venlighedsvej 14, 2970 Hoersholm, Denmark
| | | | | | - Vincent Sewalt
- IFF, 925 Page Mill Road, Palo Alto, CA 94304, United States
| | - Noël van Peij
- DSM-Firmenich, Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands
| | - Patrice Ville
- Lesaffre, 101 rue de Menin, 59706 Marcq-en-Baroeul, France
| | | | - Yolanda White
- Lallemand SAS, 19 rue des Briquetiers, 31700 Blagnac, France
| | - Jakub Rusek
- EFFCA - European Food and Fermentation Cultures Association,c/o Kellen, 188 Avenue de Tervueren, Brussels, Postbox 4, 1150 Brussels, Belgium
| |
Collapse
|
9
|
Xu Z, Chen S, Wu W, Wen Y, Cao H. Type I CRISPR-Cas-mediated microbial gene editing and regulation. AIMS Microbiol 2023; 9:780-800. [PMID: 38173969 PMCID: PMC10758571 DOI: 10.3934/microbiol.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Tang J, Wei Y, Pi C, Zheng W, Zuo Y, Shi P, Chen J, Xiong L, Chen T, Liu H, Zhao Q, Yin S, Ren W, Cao P, Zeng N, Zhao L. The therapeutic value of bifidobacteria in cardiovascular disease. NPJ Biofilms Microbiomes 2023; 9:82. [PMID: 37903770 PMCID: PMC10616273 DOI: 10.1038/s41522-023-00448-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
There has been an increase in cardiovascular morbidity and mortality over the past few decades, making cardiovascular disease (CVD) the leading cause of death worldwide. However, the pathogenesis of CVD is multi-factorial, complex, and not fully understood. The gut microbiome has long been recognized to play a critical role in maintaining the physiological and metabolic health of the host. Recent scientific advances have provided evidence that alterations in the gut microbiome and its metabolites have a profound influence on the development and progression of CVD. Among the trillions of microorganisms in the gut, bifidobacteria, which, interestingly, were found through the literature to play a key role not only in regulating gut microbiota function and metabolism, but also in reducing classical risk factors for CVD (e.g., obesity, hyperlipidemia, diabetes) by suppressing oxidative stress, improving immunomodulation, and correcting lipid, glucose, and cholesterol metabolism. This review explores the direct and indirect effects of bifidobacteria on the development of CVD and highlights its potential therapeutic value in hypertension, atherosclerosis, myocardial infarction, and heart failure. By describing the key role of Bifidobacterium in the link between gut microbiology and CVD, we aim to provide a theoretical basis for improving the subsequent clinical applications of Bifidobacterium and for the development of Bifidobacterium nutritional products.
Collapse
Affiliation(s)
- Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Shi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Qianjiao Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Peng Cao
- The Affiliated Hospital of Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P.R. China.
| | - Nan Zeng
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, 1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan, 611137, P.R. China.
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
12
|
Hu Y, Hong H, Zhou J, Cui Y, Zhang B, Zhao J. Recent advances in enzymatic properties, preparation methods, and functions of glycoside hydrolase from Bifidobacterium: a review. World J Microbiol Biotechnol 2023; 39:344. [PMID: 37843698 DOI: 10.1007/s11274-023-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Huili Hong
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jianing Zhou
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Yangyang Cui
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Baochun Zhang
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jun Zhao
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
13
|
Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. BIODESIGN RESEARCH 2023; 5:0017. [PMID: 37849462 PMCID: PMC10541000 DOI: 10.34133/bdr.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.
Collapse
Affiliation(s)
- Ling Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shimaa Elsayed Helal
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
14
|
Shangguan Q, White MF. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001373. [PMID: 37526970 PMCID: PMC10482374 DOI: 10.1099/mic.0.001373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The CRISPR-Cas system functions as a prokaryotic immune system and is highly diverse, with six major types and numerous sub-types. The most abundant are type I CRISPR systems, which utilize a multi-subunit effector, Cascade, and a CRISPR RNA (crRNA) to detect invading DNA species. Detection leads to DNA loading of the Cas3 helicase-nuclease, leading to long-range deletions in the targeted DNA, thus providing immunity against mobile genetic elements (MGE). Here, we focus on the type I-G system, a streamlined, 4-subunit complex with an atypical Cas3 enzyme. We demonstrate that Cas3 helicase activity is not essential for immunity against MGE in vivo and explore applications of the Thioalkalivibrio sulfidiphilus Cascade effector for genome engineering in Escherichia coli. Long-range, bidirectional deletions were observed when the lacZ gene was targeted. Deactivation of the Cas3 helicase activity dramatically altered the types of deletions observed, with small deletions flanked by direct repeats that are suggestive of microhomology mediated end joining. When donor DNA templates were present, both the wild-type and helicase-deficient systems promoted homology-directed repair (HDR), with the latter system providing improvements in editing efficiency, suggesting that a single nick in the target site may promote HDR in E. coli using the type I-G system. These findings open the way for further application of the type I-G CRISPR systems in genome engineering.
Collapse
Affiliation(s)
- Qilin Shangguan
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Malcolm F. White
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
15
|
Raes J. Nifty new tools for microbiome treatment design. Nat Rev Gastroenterol Hepatol 2023; 20:77-78. [PMID: 36609547 DOI: 10.1038/s41575-022-00735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jeroen Raes
- Rega Institute, KU Leuven, Leuven, Belgium. .,Center for Microbiology, VIB, Leuven, Belgium.
| |
Collapse
|
16
|
Yan F, Wang J, Zhang S, Lu Z, Li S, Ji Z, Song C, Chen G, Xu J, Feng J, Zhou X, Zhou H. CRISPR/FnCas12a-mediated efficient multiplex and iterative genome editing in bacterial plant pathogens without donor DNA templates. PLoS Pathog 2023; 19:e1010961. [PMID: 36626407 PMCID: PMC9870152 DOI: 10.1371/journal.ppat.1010961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/23/2023] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
CRISPR-based genome editing technology is revolutionizing prokaryotic research, but it has been rarely studied in bacterial plant pathogens. Here, we have developed a targeted genome editing method with no requirement of donor templates for convenient and efficient gene knockout in Xanthomonas oryzae pv. oryzae (Xoo), one of the most important bacterial pathogens on rice, by employing the heterologous CRISPR/Cas12a from Francisella novicida and NHEJ proteins from Mycobacterium tuberculosis. FnCas12a nuclease generated both small and large DNA deletions at the target sites as well as it enabled multiplex genome editing, gene cluster deletion, and plasmid curing in the Xoo PXO99A strain. Accordingly, a non-TAL effector-free polymutant strain PXO99AD25E, which lacks all 25 xop genes involved in Xoo pathogenesis, has been engineered through iterative genome editing. Whole-genome sequencing analysis indicated that FnCas12a did not have a noticeable off-target effect. In addition, we revealed that these strategies are also suitable for targeted genome editing in another bacterial plant pathogen Pseudomonas syringae pv. tomato (Pst). We believe that our bacterial genome editing method will greatly expand the CRISPR study on microorganisms and advance our understanding of the physiology and pathogenesis of Xoo.
Collapse
Affiliation(s)
- Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sujie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, China
| | - Zhenwan Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, China
| | - Shaofang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Congfeng Song
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Gongyou Chen
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, China,* E-mail:
| |
Collapse
|
17
|
Sheridan PO, Odat MA, Scott KP. Establishing genetic manipulation for novel strains of human gut bacteria. MICROBIOME RESEARCH REPORTS 2023; 2:1. [PMID: 38059211 PMCID: PMC10696588 DOI: 10.20517/mrr.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 12/12/2022] [Indexed: 12/08/2023]
Abstract
Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.
Collapse
Affiliation(s)
- Paul O. Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Ma’en Al Odat
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Karen P. Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
18
|
Gu S, Zhang J, Li L, Zhong J. Repurposing the Endogenous CRISPR-Cas9 System for High-Efficiency Genome Editing in Lacticaseibacillus paracasei. ACS Synth Biol 2022; 11:4031-4042. [PMID: 36414383 DOI: 10.1021/acssynbio.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactobacilli such as Lacticaseibacillus (Lcb) paracasei are generally regarded as safe and health-promoting microbes, and have been widely applied in food and pharmaceutical industries. However, the genetic bases of their beneficial properties were mostly uncertain because of the lack of effective genetic manipulation tools. The type II CRISPR-Cas9 system is the largest family present in lactobacilli, but none of them yet have been developed for genetic modifications. Here, we establish the first endogenous CRISPR-Cas9 genome-editing system in lactobacilli. With a validated protospacer adjacent motif (PAM) and customized single guide RNA (sgRNA) expression cassette, the native CRISPR-Cas9 system was reprogrammed to achieve gene deletion and chromosomal insertion at over 90% efficiency, as well as nucleotide substitution at ≥50% efficiency. We also effectively accomplished deletions of large genomic fragments (5-10 kb) and simultaneous deletion of multiple genes at distal loci, both of which are the first cases in lactobacilli when either endogenous or exogenous CRISPR-Cas systems were employed. In addition, we designed a controllable plasmid-targeting sgRNA expression module and integrated it into the editing plasmid. The all-in-one vector realized gene deletion and plasmid curing at high efficiency (>90%). Collectively, the present study develops a convenient and precise genetic tool in Lcb. paracasei and contributes to the genetics and engineering of lactobacilli.
Collapse
Affiliation(s)
- Shujie Gu
- University of Chinese Academy of Sciences, Beijing 100039, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Li
- University of Chinese Academy of Sciences, Beijing 100039, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- University of Chinese Academy of Sciences, Beijing 100039, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Wang J, Wei J, Li H, Li Y. High-efficiency genome editing of an extreme thermophile Thermus thermophilus using endogenous type I and type III CRISPR-Cas systems. MLIFE 2022; 1:412-427. [PMID: 38818488 PMCID: PMC10989782 DOI: 10.1002/mlf2.12045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/01/2024]
Abstract
Thermus thermophilus is an attractive species in the bioindustry due to its valuable natural products, abundant thermophilic enzymes, and promising fermentation capacities. However, efficient and versatile genome editing tools are not available for this species. In this study, we developed an efficient genome editing tool for T. thermophilus HB27 based on its endogenous type I-B, I-C, and III-A/B CRISPR-Cas systems. First, we systematically characterized the DNA interference capabilities of the different types of the native CRISPR-Cas systems in T. thermophilus HB27. We found that genomic manipulations such as gene deletion, mutation, and in situ tagging could be easily implemented by a series of genome-editing plasmids carrying an artificial self-targeting mini-CRISPR and a donor DNA responsible for the recombinant recovery. We also compared the genome editing efficiency of different CRISPR-Cas systems and the editing plasmids with donor DNAs of different lengths. Additionally, we developed a reporter gene system for T. thermophilus based on a heat-stable β-galactosidase gene TTP0042, and constructed an engineered strain with a high production capacity of superoxide dismutases by genome modification.
Collapse
Affiliation(s)
- Jinting Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Junwei Wei
- State Key Laboratory of Agricultural Microbiology and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Haijuan Li
- College of Biological and Environmental EngineeringXi'an UniversityXi'anChina
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|