1
|
Anderson MJM, Hayward AN, Smiley AT, Shi K, Pawlak MR, Aird EJ, Grant E, Greenberg L, Aihara H, Evans RL, Ulens C, Gordon WR. Molecular basis of proteolytic cleavage regulation by the extracellular matrix receptor dystroglycan. Structure 2024; 32:1984-1996.e5. [PMID: 39305901 DOI: 10.1016/j.str.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
The dystrophin-glycoprotein-complex (DGC), anchored by the transmembrane protein dystroglycan, functions to mechanically link the extracellular matrix and actin cytoskeleton. Breaking this connection is associated with diseases such as muscular dystrophy, yet cleavage of dystroglycan by matrix-metalloproteinases (MMPs) remains an understudied mechanism to disrupt the DGC. We determined the crystal structure of the membrane-adjacent domain (amino acids 491-722) of E. coli expressed human dystroglycan to understand MMP cleavage regulation. The structural model includes tandem immunoglobulin-like (IGL) and sperm/enterokinase/agrin-like (SEAL) domains, which support proteolysis in diverse receptors to facilitate mechanotransduction, membrane protection, and viral entry. The structure reveals a C-terminal extension that buries the MMP site by packing into a hydrophobic pocket, a unique mechanism of MMP cleavage regulation. We further demonstrate structure-guided and disease-associated mutations disrupt proteolytic regulation using a cell-surface proteolysis assay. Thus disrupted proteolysis is a potentially relevant mechanism for "breaking" the DGC link to contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Michael J M Anderson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Adam T Smiley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Matthew R Pawlak
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; Currently at Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Eva Grant
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Lauren Greenberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Robert L Evans
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Christopher Ulens
- Department of Cellular and Molecular Medicine, Karolinksa University Leuven, 3000 Leuven, Belgium
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Hu L, Cohen RI, Barroso M, Boustany NN. Comparison of vinculin tension in cellular monolayers and three-dimensional multicellular aggregates. BIOMEDICAL OPTICS EXPRESS 2024; 15:5199-5214. [PMID: 39296399 PMCID: PMC11407257 DOI: 10.1364/boe.529156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024]
Abstract
Confocal frequency-domain fluorescence lifetime and Förster resonance energy transfer (FRET) microscopy of Chinese hamster ovary (CHO-K1) cells expressing the vinculin tension sensor (VinTS) is used to compare vinculin tension in three-dimensional (3D) multicellular aggregates and 2D cellular monolayers. In both 2D and 3D cultures, the FRET efficiency of VinTS is 5-6% lower than that of VinTL (p < 0.05), a tail-less control which cannot bind actin or paxillin. The difference between VinTS and VinTL FRET efficiency can be mitigated by treatment with the Rho-associated kinase inhibitor Y-27632, demonstrating that VinTS is under tension in both 2D and 3D cultures. However, there is an overall decrease in FRET efficiency of both VinTS and VinTL in the 3D multicellular aggregates compared with the 2D monolayers. Expression of VinTS in 2D and 3D cultures exhibits puncta consistent with cellular adhesions. While paxillin is present at the sites of VinTS expression in the 2D monolayers, it is generally absent from VinTS puncta in the 3D aggregates. The results suggest that VinTS experiences a modified environment in 3D aggregates compared with 2D monolayers and provide a basis for further investigation of molecular tension sensors in 3D tissue models.
Collapse
Affiliation(s)
- Luni Hu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Konieczny P. Systemic Treatment of Body-Wide Duchenne Muscular Dystrophy Symptoms. Clin Pharmacol Ther 2024. [PMID: 38965715 DOI: 10.1002/cpt.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease that leads to premature death due to the loss of dystrophin. Current strategies predominantly focus on the therapeutic treatment of affected skeletal muscle tissue. However, certain results point to the fact that with successful treatment of skeletal muscle, DMD-exposed latent phenotypes in tissues, such as cardiac and smooth muscle, might lead to adverse effects and even death. Likewise, it is now clear that the absence of dystrophin affects the function of the nervous system, and that this phenotype is more pronounced when shorter dystrophins are absent, in addition to the full-length dystrophin that is present predominantly in the muscle. Here, I focus on the systemic aspects of DMD, highlighting the ubiquitous expression of the dystrophin gene in human tissues. Furthermore, I describe therapeutic strategies that have been tested in the clinic and point to unresolved questions regarding the function of distinct dystrophin isoforms, and the possibility of current therapeutic strategies to tackle phenotypes that relate to their absence.
Collapse
Affiliation(s)
- Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Alnassar N, Hajto J, Rumney RMH, Verma S, Borczyk M, Saha C, Kanczler J, Butt AM, Occhipinti A, Pomeroy J, Angione C, Korostynski M, Górecki DC. Ablation of the dystrophin Dp71f alternative C-terminal variant increases sarcoma tumour cell aggressiveness. Hum Mol Genet 2024:ddae094. [PMID: 38850567 DOI: 10.1093/hmg/ddae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Alterations in Dp71 expression, the most ubiquitous dystrophin isoform, have been associated with patient survival across tumours. Intriguingly, in certain malignancies, Dp71 acts as a tumour suppressor, while manifesting oncogenic properties in others. This diversity could be explained by the expression of two Dp71 splice variants encoding proteins with distinct C-termini, each with specific properties. Expression of these variants has impeded the exploration of their unique roles. Using CRISPR/Cas9, we ablated the Dp71f variant with the alternative C-terminus in a sarcoma cell line not expressing the canonical C-terminal variant, and conducted molecular (RNAseq) and functional characterisation of the knockout cells. Dp71f ablation induced major transcriptomic alterations, particularly affecting the expression of genes involved in calcium signalling and ECM-receptor interaction pathways. The genome-scale metabolic analysis identified significant downregulation of glucose transport via membrane vesicle reaction (GLCter) and downregulated glycolysis/gluconeogenesis pathway. Functionally, these molecular changes corresponded with, increased calcium responses, cell adhesion, proliferation, survival under serum starvation and chemotherapeutic resistance. Knockout cells showed reduced GLUT1 protein expression, survival without attachment and their migration and invasion in vitro and in vivo were unaltered, despite increased matrix metalloproteinases release. Our findings emphasise the importance of alternative splicing of dystrophin transcripts and underscore the role of the Dp71f variant, which appears to govern distinct cellular processes frequently dysregulated in tumour cells. The loss of this regulatory mechanism promotes sarcoma cell survival and treatment resistance. Thus, Dp71f is a target for future investigations exploring the intricate functions of specific DMD transcripts in physiology and across malignancies.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PAS, Smetna 12, Krakow 31155, Poland
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Tees Valley TS1 3BX, United Kingdom
| | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PAS, Smetna 12, Krakow 31155, Poland
| | - Chandrika Saha
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Janos Kanczler
- Bone & Joint Research Group, Department of Human Development and Health, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Arthur M Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Tees Valley TS1 3BX, United Kingdom
| | - Joanna Pomeroy
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, Tees Valley TS1 3BX, United Kingdom
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PAS, Smetna 12, Krakow 31155, Poland
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| |
Collapse
|
6
|
Liu Y, Tang Y, Zhang H, Chen H, Luo Q, Liu J. Duchenne muscular dystrophy caused by a deletion (c.5021del) in exon 35 of the DMD gene: A case report and review of the literature. Heliyon 2024; 10:e28677. [PMID: 38586344 PMCID: PMC10998125 DOI: 10.1016/j.heliyon.2024.e28677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Duchenne muscular dystrophy (DMD MIM#310200) is a degenerative muscle disease caused by mutations in the dystrophin gene located on Xp21.2. The clinical features encompass muscle weakness and markedly elevated serum creatine kinase levels. An 8-year-old Chinese boy was diagnosed with Duchenne muscular dystrophy (DMD). Whole exome gene sequencing was conducted and the Sanger method was used to validate sequencing. A deletion (c.5021del) in exon 35 of the dystrophin gene was identified, which was predicted to generate a frameshift mutation and create an early termination codon (p.Leu1674CysfsTer47). It has a pathogenic effect against dystrophin in the muscle cell membrane of the patient. As such, prednisone treatment at a dose of 0.75 mg/kg.d was administered. After one month, a notable reduction in fall frequency was observed. Our new finding will expand the pathogenic mutation spectrum causing DMD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yanhui Tang
- Department of Pediatric, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hui Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Hongying Chen
- Department of Pediatric, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
7
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
8
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Wang X, Zhu Y, Liu T, Zhou L, Fu Y, Zhao J, Li Y, Zheng Y, Yang X, Di X, Yang Y, He Z. Duchenne muscular dystrophy treatment with lentiviral vector containing mini-dystrophin gene in vivo. MedComm (Beijing) 2024; 5:e423. [PMID: 38188603 PMCID: PMC10771042 DOI: 10.1002/mco2.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an incurable X-linked recessive genetic disease caused by mutations in the dystrophin gene. Many researchers aim to restore truncated dystrophin via viral vectors. However, the low packaging capacity and immunogenicity of vectors have hampered their clinical application. Herein, we constructed four lentiviral vectors with truncated and sequence-optimized dystrophin genes driven by muscle-specific promoters. The four lentiviral vectors stably expressed mini-dystrophin in C2C12 muscle cells in vitro. To estimate the treatment effect in vivo, we transferred the lentiviral vectors into neonatal C57BL/10ScSn-Dmdmdx mice through local injection. The levels of modified dystrophin expression increased, and their distribution was also restored in treated mice. At the same time, they exhibited the restoration of pull force and a decrease in the number of mononuclear cells. The remissions lasted 3-6 months in vivo. Moreover, no integration sites of vectors were distributed into the oncogenes. In summary, this study preliminarily demonstrated the feasibility and safety of lentiviral vectors with mini-dystrophin for DMD gene therapy and provided a new strategy to restore truncated dystrophin.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yanghui Zhu
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Taiqing Liu
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Lingyan Zhou
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yunhai Fu
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jinhua Zhao
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yinqi Li
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yeteng Zheng
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaodong Yang
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangjie Di
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiyao He
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
11
|
Wang Y, Tong X, Shi X, Keswani T, Chatterjee E, Chen L, Li G, Lee K, Guo T, Yu Y. Chiral Cell Nanomechanics Originated in Clockwise/Counterclockwise Biofunctional Microarrays to Govern the Nuclear Mechanotransduction of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48038-48049. [PMID: 37812566 DOI: 10.1021/acsami.3c11188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cell chirality is extremely important for the evolution of cell morphogenesis to manipulate cell performance due to left-right asymmetry. Although chiral micro- and nanoscale biomaterials have been developed to regulate cell functions, how cell chirality affects cell nanomechanics to command nuclear mechanotransduction was ambiguous. In this study, chiral engineered microcircle arrays were prepared by photosensitive cross-linking synthesis on cell culture plates to control the clockwise/counterclockwise geometric topology of stem cells. Asymmetric focal adhesion and cytoskeleton structures could induce chiral cell nanomechanics measured by atomic force microscopy (AFM) nanoindentation in left-/right-handed stem cells. Cell nanomechanics could be enhanced when the construction of mature focal adhesion and the assembly of actin and myosin cytoskeletons were well organized in chiral engineered stem cells. Curvature angles had a negative effect on cell nanomechanics, while cell chirality did not change cytoskeletal mechanics. The biased cytoskeleton tension would engender different nuclear mechanotransductions by yes-associated protein (YAP) evaluation. The chiral stimuli were delivered into the nuclei to oversee nuclear behaviors. A strong cell modulus could activate high nuclear DNA synthesis activity by mechanotransduction. The results will bring the possibility of understanding the interplay of chiral cell nanomechanics and mechanotransduction in nanomedicines and biomaterials.
Collapse
Affiliation(s)
- Yongtao Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Xiaolan Tong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Xiaohui Shi
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nan Chen Road, Shanghai 200444, China
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Spine Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Guoping Li
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Kyubae Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tao Guo
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Spine Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
12
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
13
|
Pawlak MR, Smiley AT, Ramirez MP, Kelly MD, Shamsan GA, Anderson SM, Smeester BA, Largaespada DA, Odde DJ, Gordon WR. RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes. Nat Commun 2023; 14:2468. [PMID: 37117218 PMCID: PMC10147940 DOI: 10.1038/s41467-023-38157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.
Collapse
Affiliation(s)
- Matthew R Pawlak
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Smiley
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Paz Ramirez
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Marcus D Kelly
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wendy R Gordon
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Wang Z, Xie X, Wang M, Ding M, Gu S, Xing X, Sun X. Analysis of common and characteristic actions of Panax ginseng and Panax notoginseng in wound healing based on network pharmacology and meta-analysis. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
15
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
16
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|